Boundedness of Varieties of General Type
Lecture 5 Christopher Hacon (Kyoto University / Distinguished Visiting, Professor University of Utah / Distinguished Professor)
Varieties of general type are the higher dimensional analog of Riemann surfaces of genus \(g\geq 2\). If \(X\subset \mathbb P ^N _{\mathbb C}\) is a variety of general type then, by definition, the sections of \(H^0(\omega _X^{\otimes m})\) determine a birational map for all sufficiently big integers \(m>0\).
In these lectures we will explain recent results on the boundedness of varieties of general type that ultimately lead to the construction of a corresponding moduli space (more precisely to the construction of the KSBA proper functor of log canonically polarized log canonical pairs).
-
- Lecture 1
-
Christopher Hacon(Kyoto University / Distinguished Visiting Professor, University of Utah / Distinguished Professor)
2015/06/10 1:32:11 英語
-
- Lecture 2
-
Christopher Haco(Kyoto University / Distinguished Visiting Professor, University of Utah / Distinguished Professor)
2015/06/12 2:32:22 英語
-
- Lecture 3
-
Christopher Hacon (Kyoto University / Distinguished Visiting, Professor University of Utah / Distinguished Professor)
2015/06/17 1:39:55 英語
-
- Lecture 4
-
Christopher Hacon (Kyoto University / Distinguished Visiting, Professor University of Utah / Distinguished Professor)
2015/06/19 2:25:55 英語
-
- Lecture 5
-
Christopher Hacon (Kyoto University / Distinguished Visiting, Professor University of Utah / Distinguished Professor)
2015/06/26 1:24:13 英語
講義詳細
- 年度
- 2015年度
- 開催日
- 2015年6月10日 から 6月26日
- 開講部局名
- 理学研究科
- 使用言語
- 英語
- 教員/講師名
- Christopher Hacon(Kyoto University / Distinguished Visiting Professor, University of Utah / Distinguished Professor)
- 開催場所
- Room127, Graduate School of Science Bldg No 3, Room 420, Research Institute for Mathematical Sciences