Boundedness of Varieties of General Type

Lecture 4 Christopher Hacon (Kyoto University / Distinguished Visiting, Professor University of Utah / Distinguished Professor)


Varieties of general type are the higher dimensional analog of Riemann surfaces of genus \(g\geq 2\). If \(X\subset \mathbb P ^N _{\mathbb C}\) is a variety of general type then, by definition, the sections of \(H^0(\omega _X^{\otimes m})\) determine a birational map for all sufficiently big integers \(m>0\).
In these lectures we will explain recent results on the boundedness of varieties of general type that ultimately lead to the construction of a corresponding moduli space (more precisely to the construction of the KSBA proper functor of log canonically polarized log canonical pairs).

講義詳細

年度
2015年度
開催日
2015年6月10日 から 6月26日
開講部局名
理学研究科
使用言語
英語
教員/講師名
Christopher Hacon(Kyoto University / Distinguished Visiting Professor, University of Utah / Distinguished Professor)
開催場所
Room127, Graduate School of Science Bldg No 3, Room 420, Research Institute for Mathematical Sciences
PAGE TOP