Paving over arbitrary MASAs in von Neumann algebras
Lecture 3 Sorin POPA
Course Description
Motivated by an intriguing claim in Dirac’s 1947 book on “Quantum Mechanics”, Kadison and Singer have asked the question of whether any pure state on the diagonal maximal abelian subalgebra (MASA) \( D \) of \(B(H) \) extends to a unique state on \(B(H) \). They also showed that this unique pure state extension property is equivalent to norm paving over \( D \) for operators in \(B(H) \). The Kadison–Singer paving problem has been recently solved in the affirmative by Marcus–Spielman–Srivastava.
In these lectures, we will introduce a general paving property for a MASA \( A \) in a von Neumann factor \( M \) , called so-paving, involving approximation in the so-topology, rather than in norm, but which coincides with norm-paving in the case \( D \subset B(H) \) . We conjecture that so-paving holds true for any MASA in any factor. We check the conjecture in many cases, including singular and regular MASAs in hyperfine factors. Related problems will be discussed.
Details
- Year/Term
- 2016 / Intensive, First semester
- Date
- September 5th to September 9th, 2016
- Faculty/
Graduate School - Graduate School of Science
- Language
- English
- Instructor name
- Sorin POPA(Distinguished Visiting Professor, Kyoto University / Professor, University of California, Los Angeles)
- Place
- Room 127, Graduate School of Science Bldg No 3
Related Courses
Masae Ishihara, Yasuyuki Shibata
Graduate School of Science, Field Science Education and Research Center
2021Prof. Charles Bordenave
Graduate School of Science
2021Stephen Theriault
Graduate School of Science
2021Boris FEIGIN
Graduate School of Science
2019