Statistical physics on sparse random graphs: A mathematical perspective

Gibbs measures, the set of near-optimal solutions for CSP-s and justifying the one Replica-Symmetry-Breaking prediction. Amir DEMBO

Course Description
Theoretical models of disordered materials yield precise predictions about the typical complexity of certain combinatorial optimization problems. The underlying common structure is that of many discrete variables, whose interaction is represented by a random ‘tree like’ sparse graph. I will survey recent progress in proving such predictions, the related insights gained from it, and certain interesting connections with spin-glass models, random matrices and extremal graphs.

講義詳細

年度・期
2016年度・後期集中
開催日
2016年10月28日 から 11月18日
開講部局名
理学研究科
使用言語
英語
教員/講師名
Amir DEMBO(Distinguished Visiting Professor, Kyoto University / Professor, Stanford University)
開催場所
Room 127, Graduate School of Science Bldg No 3
PAGE TOP