Vertex algebras, instanton counting and invariants of 3 and 4 dimensional manifolds
Lecture 1 Boris FEIGIN
Course Description
1. Representation theory. Affine Kac-Moody algebras. Integrable representations. Characters formulas. Two ways to understand characters – geometric and combinatorial. Lefschetz fix points formula and Brion theorem.
2. Vertex operator algebras and conformal fields theories. Characters of representations of vertex algebras.Simplest case -minimal models for Virasoro algebra. Conformal blocks and modular functor. Constructions of vertex algebras by reduction or by extensions.
3. Elements of geometric representation theory. Vertex algebras and invariants of 4-dimensional manifolds.Instanton counting.
4. 3-dimensional manifolds and logarithmic theories. Invariants of 3-dimensional manifolds
講義詳細
- 年度・期
- 2019年度・前期集中
- 開催日
- 2019年7月22日 から 7月26日
- 開講部局名
- 理学研究科
- 使用言語
- 英語
- 教員/講師名
- Boris FEIGIN(Distinguished Visiting Professor,Kyoto University / Leading Researcher, Landau Institute for Theoretical Physics)
- 開催場所
- 127 Conference Room, Faculty of Science Bldg No 3