International Workshop an What is Eualution?

- Bicentennial of Charles Darmin's Birth -

A method for constructing databases for global dynamics of multi-parameter systems

Hiroshi Kokubu
(Math, Kyoto Univ / JST CREST)
joint work with:
Z. Arai, B. Kalies, K. Mischaikow, P. Pilarczyk, H. Oka

Growing interest in dynamics of
systems with large degrees of freedom
e.g. coupled systems, network dynamics, ...

Difficulties for understanding such systems

- Lack of useful theory

Naive analysis is very limited
General theory is often not very helpful

- Numerical simulation can give little information

Phase space is too large
Easily miss important part of dynamics
Hard to capture global structure
Too many parameters to control

Description of global dynamics, insensitive to dimension

Our approach:

Graph-based description of dynamical information

Features

- Rigorous "outer-approximation" of global dynamics
- Combination of Dynamics, Topology, and Computation
- Can construct a "Database" for dynamics of multi-dim, multi-parameter systems

Outline of the proposed method

(I) Grid decomposition of phase \& parameter space
(2) RIgorous outer-approximation of dynamics

Interval arithmetic
(3) Graph representation of dynamics
(4) Gradient-like vs Recurrent decomposition of dynamics

Morse decomposition
(5) Topological representation for recurrent dynamics

Conley index
(6) Collect all information and build a "database"

Rigorous combinatorial description of dynamics

Suppose a dynamical system given by iterates of a map T
Cubical grid decomposition of phase space

Rigorous error bound using interval arithmetic
Combinatorial multi-valued map on cubical grid
Rigorous outer-approximation of the dynamics:

$$
T(B) \subset \operatorname{int}|\mathcal{T}(B)|(\forall B)
$$

Graph representation of dynamics

combinatorial multi-valued map

\rightarrow directed graph \mathcal{G} with
$\begin{aligned} \text { vertex } & =\text { cube } \\ \text { edge } & =\text { arrow as above }\end{aligned}$

Task: obtain dynamical properties from the graph

Combinatorial invariant sets [Kalies et al 2005]

Collection of all cubes with a bi-infinite path
$\operatorname{Inv}_{f}(N) \subset \operatorname{Inv}(\mathcal{G}):$ combinatorial maximal invariant set
Collection of all cubes with a loop
$\mathcal{R}(f) \subset \operatorname{Scc}(\mathcal{G})$:combinatorial chain-recurrent set

$\operatorname{Inv}(\mathcal{G}), \operatorname{Scc}(\mathcal{G})$ computable by fast graph algorithms

Combinatorial Morse decomposition [Ban-Kalies, 2006]

Dynamics gradient-like (or uni-directional) outside combinatorial chain-recurrent components

Different colors represent different Morse sets
Combinatorial connecting orbits of the graph
Warning: true connecting orbits might be empty

Partial topological information of recurrent dynamics

Conley index for an isolated invariant set is the "shift-equivalence class"
of the homology map of an index pair
E.g.

Index pair $\left(P_{1}, P_{2}\right) \quad\left(P_{1}\right.$: isolating nbhd ; P_{2} : exit set $)$

$$
F\left(P_{1}, P_{2}\right)=\mathbb{R} \quad H_{2}\left(P_{1}, P_{2}\right)=\mathbb{R}
$$

Can be obtained from
$f_{1}(x)= \pm x \quad f_{2}(x)= \pm x$ combinatorial MV map
In practice: Conley index = degree + non-zero e.v.

Conley-Morse graph

Morse decomp. of phase space \& Conley index

Dynamical Database

Given a dynamical system, ...
Computation

Input
Equation
Phase space
Parameter space

Dynamics
at each parameter ("Conley-Morse graph")
Parameter sets with "same" dynamics

Number of attractors? Periodic behavior? etc.

Dynamical Database: illustration

[Arai et al, SIADS 2009]
Nonlinear Leslie model
[Ugarcovici-Weiss 2004]

$$
\begin{gathered}
T:\binom{x_{1}}{x_{2}}=\binom{\left(f_{1} x_{1}+f_{2} x_{2}\right) e^{-0.1\left(x_{1}+x_{2}\right)}}{p x_{1}} \\
10 \leq f_{1}, f_{2} \leq 50, p=0.7
\end{gathered}
$$

Phase Space

Comparison with usual numerical simulation

$$
f_{1}=f_{2}=22.625
$$

saddle 3-cycle set

$$
\text { repelling } \mid \text {-cycle set } \begin{gathered}
0: 8765 \\
H=(0,0, Z) \\
M a p 2: \\
\# 1=1
\end{gathered}
$$

$$
\begin{gathered}
\text { 3: } 228 \\
\mathrm{H}=\left(0, \mathrm{Z}^{\wedge 3}, 0\right) \\
\text { Map 1: } \\
\# 1=2 \\
\# 2=3 \\
\# 3=1
\end{gathered}
$$

Eigenvalues 1: $(-0.5-0.866 \mathrm{i},-0.5+0.866 \mathrm{i}, 1)$.

Graph representation of Parameter sp. structure

Continuation Class \& Continuation Graph

Some Future Problems

Computational problems

- Higher dim (phase and parameter) spaces
- Flow case (ODEs)
- Improvement of algorithms

Mathematical problems

- Better representation of dynamics
- Internal structure of recurrent sets
- How to identify bifurcations?

References

A.Zin, W.Kalies, H.K, K.Mischaikow, H.Oka, P.Pilarczyk, SIAM Applied Dynamical Systems, 8 (2009), 757-789
(and references therein)
http://chomp.rutgers.edu/database
Interactive diagrams for computed results
3-parameter results
Links to source code and related software, etc.

