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Difficulties for understanding such systems
- Lack of useful theory

- Numerical simulation can give little information
General theory is often not very helpful

テキスト

Easily miss important part of dynamics
Hard to capture global structure
Too many parameters to control

What Mathematics can do for understanding 
global dynamics of multi-dim systems with multi-parameters?

Naive analysis is very limited

Description of global dynamics, 

Phase space is too large

insensitive to dimension

Growing interest in dynamics of 
                    systems with large degrees of freedom

e.g.  coupled systems, network dynamics, ...



Our approach:

Strongly path-connected components- possibility for systems with large degrees of freedom

Graph-based description of dynamical information

- Combination of  Dynamics, Topology, and Computation

- Can construct a “Database” for 
            dynamics of multi-dim, multi-parameter systems

テキスト

- Rigorous “outer-approximation” of global dynamics

Features



(2) RIgorous outer-approximation of dynamics 

(4) Gradient-like vs Recurrent decomposition of dynamics

(5) Topological representation for recurrent dynamics

Outline of the proposed method

(1) Grid decomposition of phase & parameter space

(6) Collect all information and build a “database”

テキスト

(3) Graph representation of dynamics

Morse decomposition

Interval arithmetic

Conley index

テキスト



T

Cubical grid decomposition of phase space

Rigorous combinatorial description of dynamics

R

Combinatorial multi-valued map on cubical grid 

Rigorous outer-approximation of the dynamics:
T (B) ⊂ int|T (B)| (∀B)

Suppose a dynamical system given by iterates of a map T

Rigorous error bound using interval arithmetic

T



Graph representation of dynamics

Task:  obtain dynamical properties from the graph

→ directed graph      with vertex = cube
  edge  = arrow as aboveG

combinatorial multi-valued map

T



Combinatorial invariant sets

Collection of all cubes with a bi-infinite path

- combinatorial invariant set covers 
        a chain-recurrent transitive component

[Kalies et al 2005]

: combinatorial maximal invariant setInvf (N) ⊂ Inv(G)

: combinatorial chain-recurrent setR(f) ⊂ Scc(G)

computable by fast graph algorithmsInv(G), Scc(G)

Collection of all cubes with a loop



Different colors represent different Morse sets

Dynamics gradient-like (or uni-directional) 
         outside combinatorial chain-recurrent components

Combinatorial Morse decomposition [Ban-Kalies, 2006]

Combinatorial connecting orbits of the graph

Warning: true connecting orbits might be empty



H1(P1, P2) = R

f1(x) = ±x

P1 P2

Can be obtained from 
combinatorial MV map

Conley index for an isolated invariant set
Partial topological information of recurrent dynamics

テキスト

is the “shift-equivalence class”
        of the homology map of an index pair

In practice: Conley index = degree + non-zero e.v.

E.g.
Index pair (P1, P2) (    : isolating nbhd ;     : exit set)P2P1

H2(P1, P2) = R

f2(x) = ±x

P1 P2



Morse decomp. of phase space & Conley index

p4 : origin

p3 : 1 {-0.5-0.866i, -0.5+0.866i, 1}

p2 : 0 {-0.5-0.866i, -0.5+0.866i, 1}

p1 : 0 

p0 : 0 {1} 

Conley-Morse graph

attracting 
3-cycle set

H0(P1, P2) = R3

f0 =




0 1 0
0 0 1
1 0 0







Input

Phase space
Equation

Parameter space

Computation
Dynamics 
      at each parameter

 (“Conley-Morse graph”)

Parameter sets with 
      “same” dynamics

Dynamical Database

etc.
dynamical information

Number of attractors? Periodic behavior?

inquiry answer

Dynamical Database
Given a dynamical system, ...



T :
(

x1

x2

)
=

(
(f1x1 + f2x2)e−0.1(x1+x2)

px1

)Nonlinear Leslie model [Ugarcovici-Weiss 2004]

10 ≤ f1, f2 ≤ 50, p = 0.7

Parameter  Space

Dynamical Database: illustration
[Arai et al, SIADS 2009]

Phase Space



attracting 2-cycle set

saddle-like 1-cycle set

attracting “fixed point”
or 1-cycle set

For example, ...

looks like a
period-doubling

bifurcation



Comparison with usual numerical simulation

Chaotic dynamics of a nonlinear population model 1695

Figure 1. Bifurcation diagram: 10 ! f ! 35.

5. The two-generation model

In this section, we study the two-generation model with equal fertility rates f = f1 = f2 and
fixed survival probability p1 = 0.7,

T (x, y) = (f · (x + y)e−0.1(x+y), 0.7x).

We have chosen this value of p1 to illustrate the complicated dynamics one obtains and,
in particular, the existence of multiple strange attractors with large basins of attraction.
This remarkable one-parameter family exhibits all the complicated dynamics we have so far
observed for the two-generation model and also contains almost all the complicated dynamics
we have so far observed for the three-generation model.

We briefly remark that for 0 < p1 < 1
2 the dynamical system undergoes a period doubling

route to chaos [36]. If 1
2 < p1 < 1, then the fixed point undergoes a supercritical Hopf

bifurcation at

fH = 1
1 + p1

e(1+2p1)/p1 ≈ 18.13.

This type of bifurcation cannot occur for one-dimensional maps. Using the observations made
in the previous section, we have, for 0 < f < 1/(1 + p1) = 0.588, the origin (0, 0) is a
global attractor. If f > 0.588, there exists a positive fixed point (equilibrium solution) that is
asymptotically stable for small enough f . For 0.588 < f < 14.9, the equilibrium solution is
a global attractor.

Figure 1 shows the bifurcation diagram for 10 ! f ! 35. (For each chosen value of f we
draw the attractor(s) by plotting the total population size, x(t)+y(t), for 10 000 ! t ! 10 500,
starting with 50 random initial conditions.) The dotted lines indicate unstable periodic points,
which must be computed separately using a root finding algorithm.

We now discuss the salient features of the bifurcation diagram. We remark that since this
is mainly a numerical study, all bifurcation values are approximate.

At f = 14.9, there is a period-3 saddle-node bifurcation that produces an attracting
period-3 orbit and its associated period-3 (unstable) saddle orbit. For 14.9 < f < 18.13,
the attracting fixed point coexists with the new period-3 attracting orbit. At f = 18.13, the
stable fixed point undergoes a supercritical Hopf bifurcation, which creates a smooth invariant
attracting closed curve.

The period-3 saddle-node bifurcation and Hopf bifurcation are followed for large
parameter values by various local and global bifurcations that we analyse later.

Bifurcation diagram in 
[Ugarcovici-Weiss, 2004]



f1 = f2 = 20.9

multiple attractors

saddle 3-cycle set



f1 = f2 = 22.625

multiple attractors

saddle 3-cycle set

repelling 1-cycle set



f1 = f2 = 22.825

attracting 3-cycle set

Boundary Crisis
(one of attractors disappears)

Chaotic dynamics of a nonlinear population model 1695

Figure 1. Bifurcation diagram: 10 ! f ! 35.
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Graph representation of Parameter sp. structure

Class 1
[890 boxes]

Class 2
[759 boxes]

Class 3
[251 boxes]

Class 4
[196 boxes]

Class 5
[88 boxes]

Class 6
[73 boxes]

Class 7
[66 boxes]

Class 8
[65 boxes]

Class 9
[50 boxes]

Class 10
[43 boxes]

Class 11
[12 boxes]

Class 12
[2 boxes]

Class 13
[1 box]

Class 14
[1 box]

Class 15
[1 box]

Class 16
[1 box]

Class 17
[1 box]

Continuation Class &
        Continuation Graph



Mathematical problems

Computational problems

- Higher dim (phase and parameter) spaces

- Internal structure of recurrent sets

- How to identify bifurcations?

- Flow case (ODEs)

- Better representation of dynamics

Some Future Problems

- Improvement of algorithms
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