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Three confined flows

« Gas~10°m
« Molecular monolayers ~ 10° m
« Bubble rafts ~ 10? m

Mechanisms of stress relaxation due to
dimensional confinement
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The minimum surface tension and respreadability of a surfactant monolayer is limited by a two to
three dimensional instability called collapse. Liquid-condensed or solid phase monolayers collapse via
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Experimental geometry

* Primarily dynamics confined to a narrow
gap (2-dimensional surface)

« Experimental observation from a point
looking down perpendicular to this surface
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Rayleigh Benard Convection
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AT>ATc
e=AT/ATc -1

R = agd’AT / vk

o Thermal expansion
v, K Viscous, thermal dissipation
d Depth of fluid layer




Stability regime

q (in units of d”')

PhD Thesis of Brendon B. Plapp 1997




Spiral Defect Chaos
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Coarse grained dynamics

» Hierarchies of defect interaction in network structure
 Packing of multi-scale structure

K.Krishan, Network structure of chaotic patterns (. )
K.Krishan, et. al., Homology and symmetry breaking in Rayleigh Benard Convection, Phys. of Fluids 19,117105, 2007




Topological structure




Scaling behavior in roll sizes
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K.Krishan, Importance of packing in spiral defect chaos (Pramana Vol 70, No 4, 669-678(2008) )



Sequence of instabilities

« Conduction to convective rolls
--- Uniform stationary pattern

« Convection to weakly turbulent pattern
--- Time dependent pattern

[ | —

Local instabilities break the symmetries of the previous
uniform stationary state.




Lung surfactants
Lung Surfactant - The Air/Fluid Interface

g Alveolar surface films containing lipids and proteins
Bronchiales R X . e
slonchi_ ZQL AR e operate at nearly zero surface tension to facilitate

A 0 b the dynamic process of breathing.

The formation of reversible 3d reservoirs from the
+ | e . interfacial film during the breathing cycle is thought
4 e to economize the loss of material from the surface
ceenaom - during this dynamic process.
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System used
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Microstructure

L.Pocivavsek et. al, Lateral stress relaxation and collapse in
Lipid monolayers (Soft Matter 2008)




Cascades of local

instabilities lead to
inherent “scaling” of

n
d y n a I I l I CS FIG. 1: (a)-(c) Fluorescence micrographs separated by 1,30
s intervals, showing the nearly-simultaneous formation of two
folds. The images are blurred by monolayer motion. The
scale bar length i1s 50 pm. (d) Typical output of the tracking
program, showing the monolayer translation within the field
of view in sequential video frames. The spikes correspond to

folding events occurring out of view. The dotted line shows
the threshold used for event identification.

Chain-reaction cascades in surfactant monolayer buckling
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Clertain surfactant monolayers at the water—air interface have been found to undergo, at a critical
surface pressure, a dynamic mstability mvolving multiple long folds of micron width. We exploit the
sharp monolayer translations accompanying folding events to acquire, using a combination of fluo-
rescence microecopy and digital image analvsis, detailed statistics concerning the folding dynamics.
The motions have a broad distribution of magnitudes and narrow, non-Gaussian distributions of
angles and durations. The statistics are consistent with the ococurrence of cooperative cascades of
folds, implyving an autocatalytic process uncommeon n the context of mechanical mstability.

PACS numbers: 6318 Jk, 64.60.0b, 32,60 Nh, 83768+



Influence of global compression

Compressive forces, F, needed are higher by about 50% for buckling of thin circular
plates as compared to a square sheet.

F=nr2 D/a? F=14.7 D/a?

D : Flexural rigidity of the plate; includes material properties such as elasticity.
a : size of the plate, diameter in case of the circular geometry and the length of a
side side for a square geometry.




Microstructure

*Symmetry of domain packing changes even at low pressures.




Infrequent structures
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What we see...




Response to local stress —
T1 events = plasticity
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* Flow induced vs. thermal fluctuations




Bubble trajectories




Velocity field




Velocity profile along shear

 Sampled across single realizations




Velocity deviation from mean

Y.Wang et. al, Limits of time and ensemble averages in shear flows, Phys. Rev. Lett. 98, 220602 (2007)




Coexistance of elastic and plastic
regions

.




Common themes

Confinement causes focusing of stresses in the
system.

| ocal stress relaxation mechanism determines
large scale structure of flow

The relaxation often lead to breaking of base
state symmetries

In all three examples, there is coexistence of the
state with broken symmetry and the base state

Power law behavior — avalanche of folds in
monolayers, power law fluid in foam, power law
scaling in convection roll lengths.
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