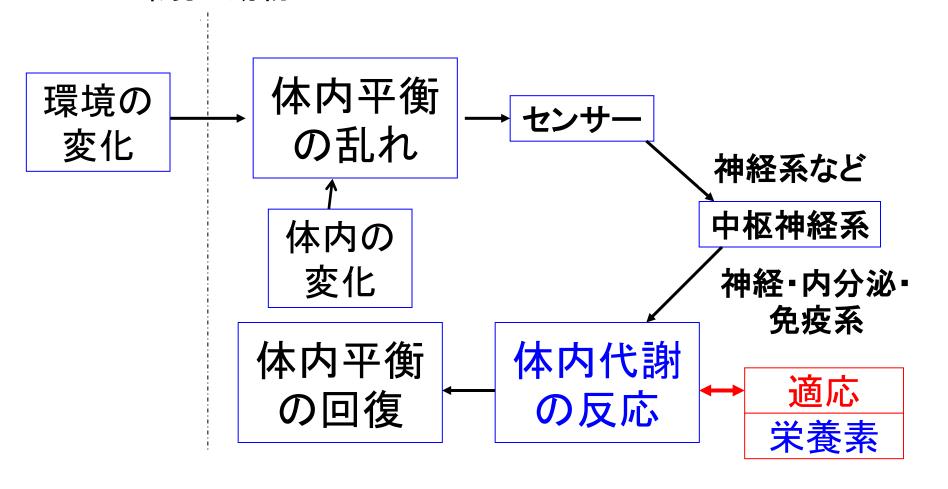
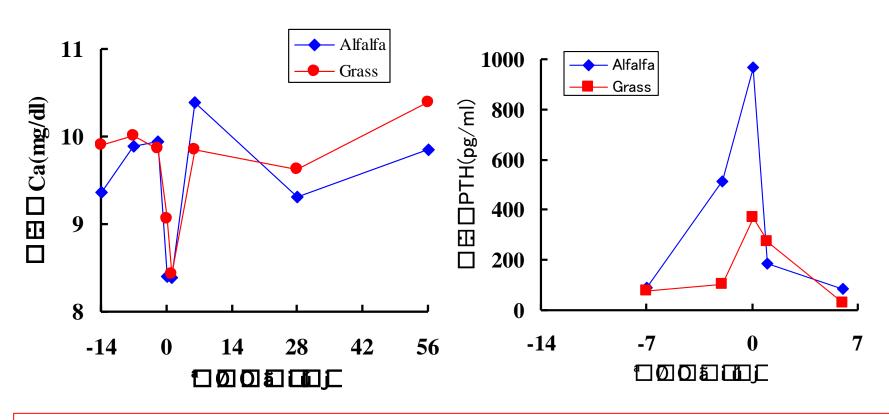
「高泌乳牛の移行期の栄養管理と周産期病の予防②」

動物の恒常性と適応

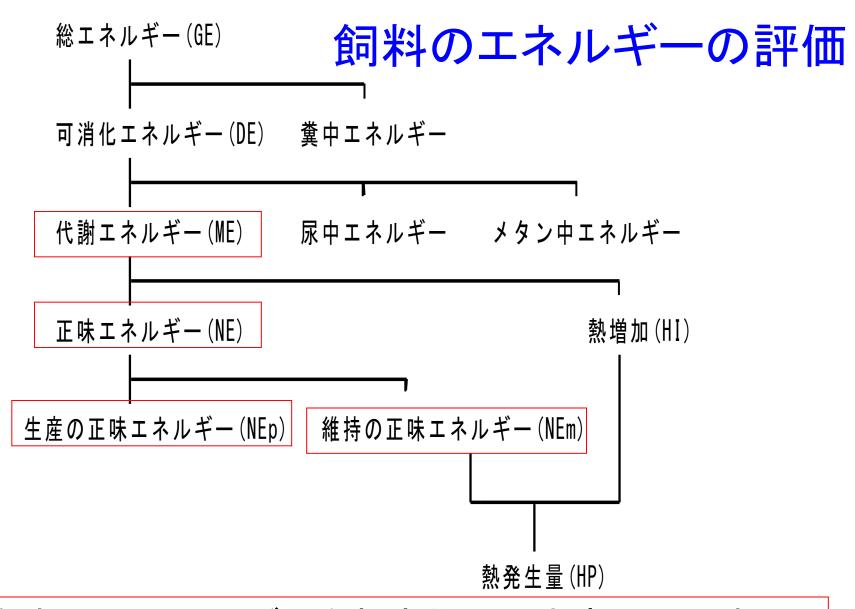

1)動物の恒常性維持機能:

動物は常に変動する体外からの情報を 受け取り、それに適切に対応しながら、体 内の生理機能を常に一定の範囲内に維 持して、健康を保っている。


2) 適応の重要性:

外部環境あるいは体内の変化に対して、神経系・内分泌系・免疫系などの機能を 高めて、体内の変化を最小限にする

図、環境の変化に対する動物の適応 --分娩時の生理的適応は?


図、アルファルファ区(◆)とグラス区(■)の血漿中Ca 濃度と副甲状腺ホルモン(PTH)

乳牛は分娩前後の生理的危機を常に正常化するように機能する(栄養管理はそれを助けることが必要)

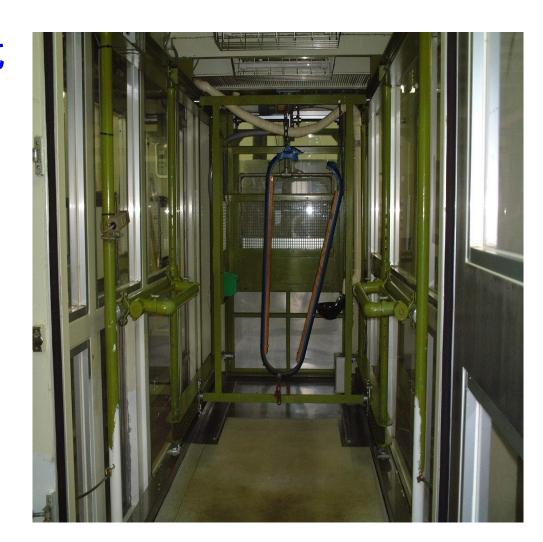
良質粗飼料を活用したエネルギー代謝の改善

- 移行期には良質粗飼料の給与が重要
- 栄養価が高く、乾物摂取量が増加する
- ・高泌乳牛は飼料の利用効率(吸収率・代 謝率)が向上--乳量増加につながる

飼料中のエネルギーを効率的に乳生産に利用する: 飼料1kgで乳量はどれだけ生産できるか(NEI)?

表、粗飼料で可能な乳生産量--アルファルファルファ給与試験(Tessmannら、1991)

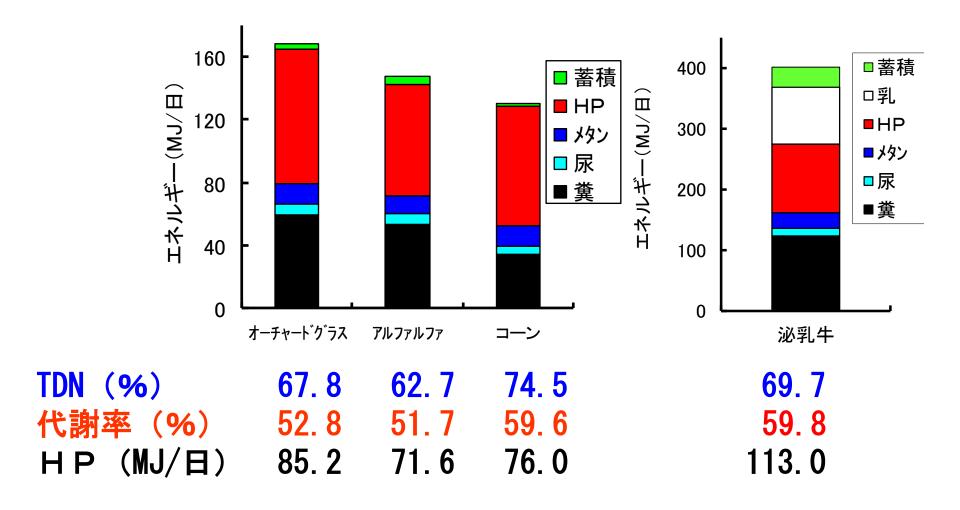
2.次 ②I 廿日	アルファルファ給与比率				
泌乳期 —	1	2	3	4	5
初期(1-12週)	38.2	48.2	58.2	68.2	98.2
中期(13-26週)	48.2	58.2	68.2	88.2	98.2
後期(27-44週)	68.2	78.2	88.2	98.2	98.2
乾物摂取量、kg/日	21.6ab	22.5a	21.1ab	20.6b	19.0c
305日乳量、kg	8641a	8315ab	7453bc	6666cd	5768d
kg/日	(28.3)	(27.3)	(24.4)	(21.9)	(18.9)
脂肪率、%	3.37b	3.76a	3.63ab	3.69a	3.77a
タンパク質率、%	3.20ab	3.24a	3.17 ab	3.11ab	3.06b


ビタミンとミネラルの補給が必要

代謝実験室(チャンバー)

北海道農業研究センター

・乳牛のエネルギー代謝


チャンバー内の流量 を一定にして、チャン バー内とチャンバー外 の濃度差から、酸素消 費量、二酸化炭素排 費量、メタン排泄量を 測定する

給与飼料(サイレージ)の成分含量(DM%) : トウモロコシサイレージは大豆粕を添加

	イネ科牧草	アルファルファ	トウモロコシ
CP	11.9	18.3	11.1
NDF	61.9	44.9	37.8
ADF	37.2	35.3	23.3
NDICP	2.6	2.4	0.7
ADICP	0.6	1.1	0.5
ADL	4.6	7.0	3.2
EE	4.2	4.3	3.2
Ash	6.9	10.5	5.3

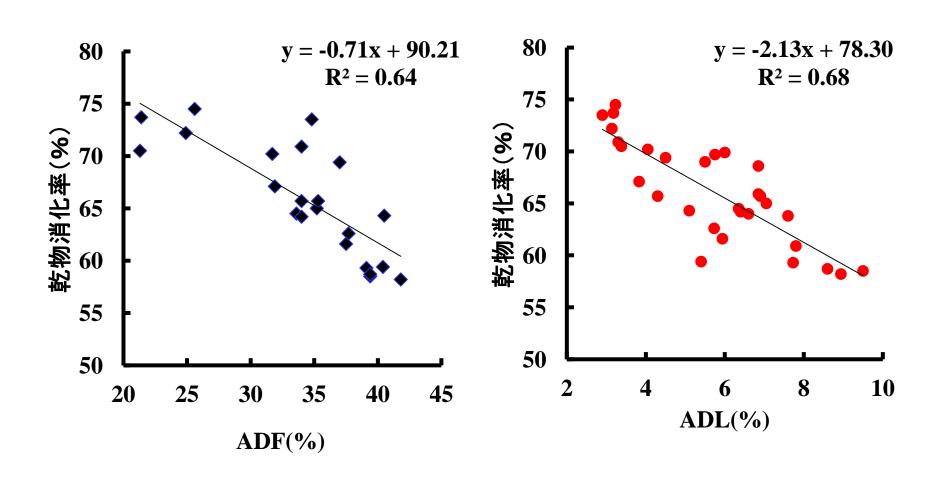
図、乾乳牛と泌乳牛(粗濃比:60:40、乳量: 30.1kg)のエネルギー代謝(HP;熱発生量)

高泌乳牛のMEm要求量 --現在の乳牛と飼料による評価

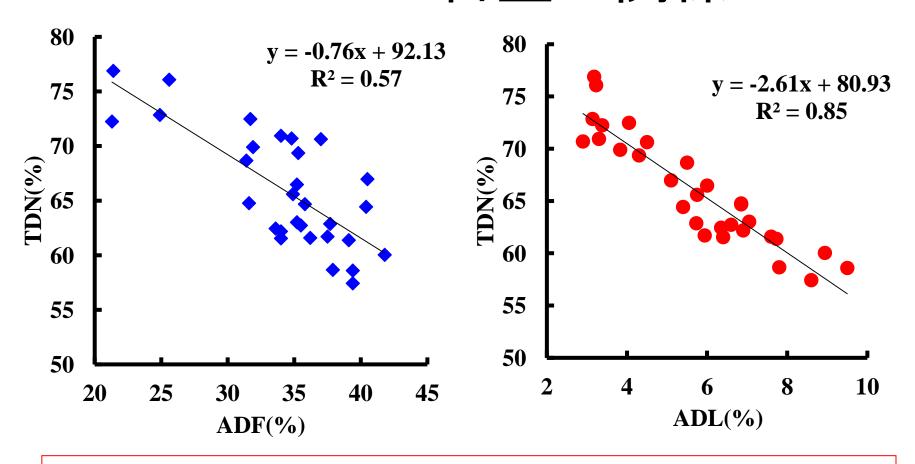
・ 高泌乳牛の血流量、肝機能、ルーメン発酵等 の活性化による代謝量増加

高泌乳牛のMEm要求量の増加(MJ/kg.75)

ARC(1980), AFRC(1993) MEm=0.48


日本飼養標準(1999) MEm=0.49

Yanら(1997:高泌乳牛n=221) MEm=0.67


早坂ら(1995:高泌乳牛n=53)MEm=0.59

久米ら(2004:粗飼料多給乾乳牛)MEm=0.596

図、サイレージ給与牛の乾物消化率 と飼料中ADF・ADL含量の関係

図、サイレージのTDNと飼料中 ADF・ADL含量の関係

良質粗飼料はTDNが高い(70%以上)

飼料設計ソフト(NRC2001)による TDNの計算--複雑化

 $TDN_{1\times}$ (%) = $tdNFC+tdCP+(tdFA\times 2.25)+tdNDF-7$

<u>真の可消化NFC(tdNFC)</u>

 $=0.98 \times (100 - ((NDF - NDICP) + CP + EE + Ash)) \times PAF$

PAF:加工処理修正ファクター(Processing Ajustment Factor)

粗飼料の真の可消化CP(tdCPf)

 $=CP \times exp(-1.2 \times (ADICP/CP))$

真の可消化FA(tdFA)

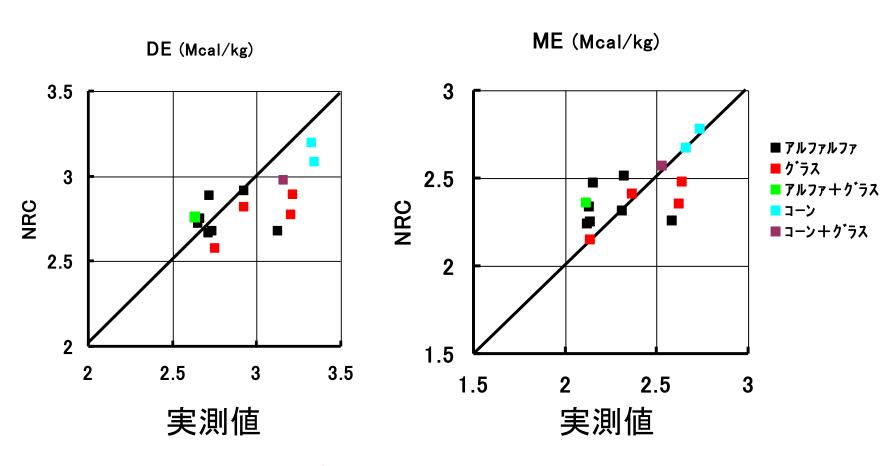
=FA EE−1 EE<1の場合 FA=0

<u>真の可消化NDF(tdNDF)</u>

=0.75×(NDFn-ADL)×(1-(ADL/NDFn^{0.667})

DEとMEの計算方法

• DE:実測値=(摂取エネルギー)-(糞のエネルギー)


(1)TDN1kgのDEを推定する

```
DE<sub>1×(Mcal/kg)</sub> = (tdNFC/100) × 4. 2
+ (tdNDF/100) × 4. 2
+ (tdCP/100) × 5. 6
+ (FA/100) × 9. 4-0. 3
```

- (2)飼料のTDNと摂食水準に応じてエネルギー価を補正するディスカウント率 =(TDN_{1×}-((0. $18 \times TDN_{1x} - 10. 3) \times 摂取量))/TDN_{1x}$
- ME:実測値=DE-(尿とメタンのエネルギー)

```
ME_p(Mcal/kg) = (1.01 \times (DE_p) - 0.45) + 0.0046 \times (EE-3)
```

エネルキーの実測値とNRCの比較

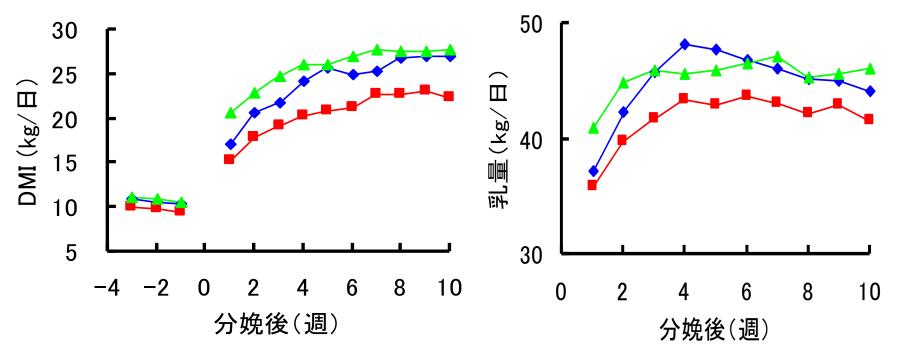
注)DEは計算値が低くなる(特に、イネ科牧草)

実測値と計算値の比較

	イネ科牧草	アルファルファ	トウモロコシ
ME実測値 (Mcal/kg)	2.44	2.25	2.70
ME計算値 (Mcal/kg)	2.35	2.34	2.72
実測値/計算値比	1.040	0.963	0.992

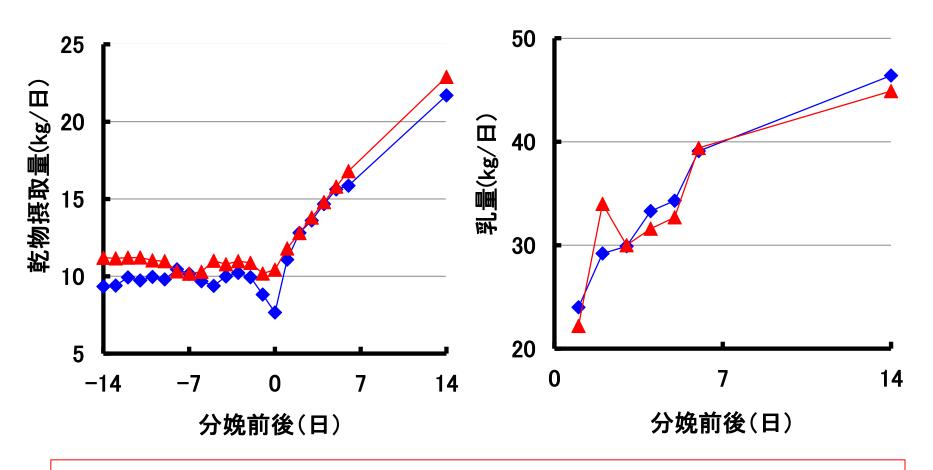
注)ME:イネ科牧草で計算値が低い(過小評価)

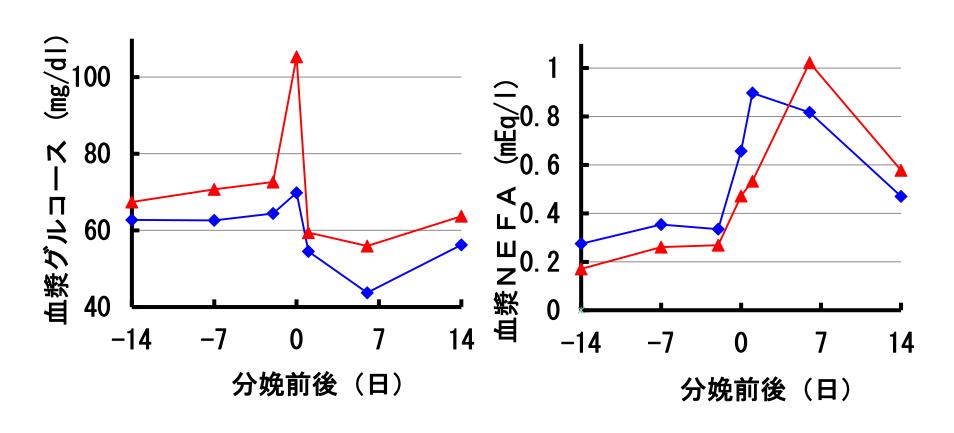
複雑な式になると、間違いを起こす確率が高まる(飼料分析でも)


高泌乳牛のエネルギー代謝

- 1. 維持に要する代謝エネルギー要求量 の増加--体内代謝・酸素消費量の増加
- 2. 飼料の利用効率(吸収率・代謝率)の 向上--少ない飼料で乳量を増やす

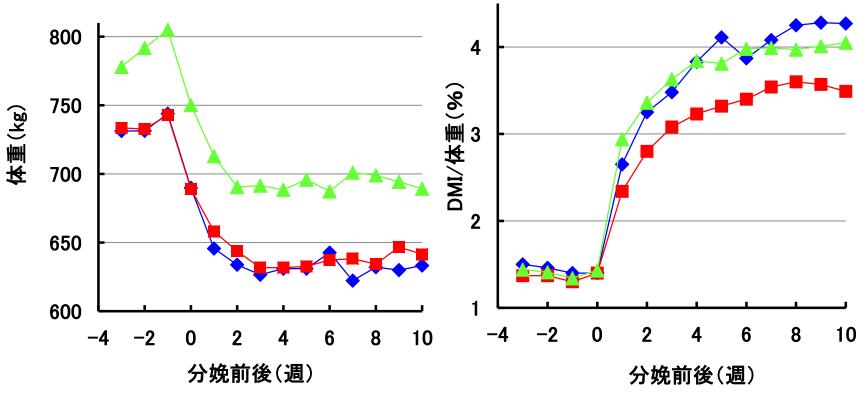
農場では、牛群検定・飼料分析などのデータ、牛群・飼料などの観察などで、 飼料設計に工夫を加えることが重要 (完全なものはない、過信しない)


周産期の乳牛の飼養管理:

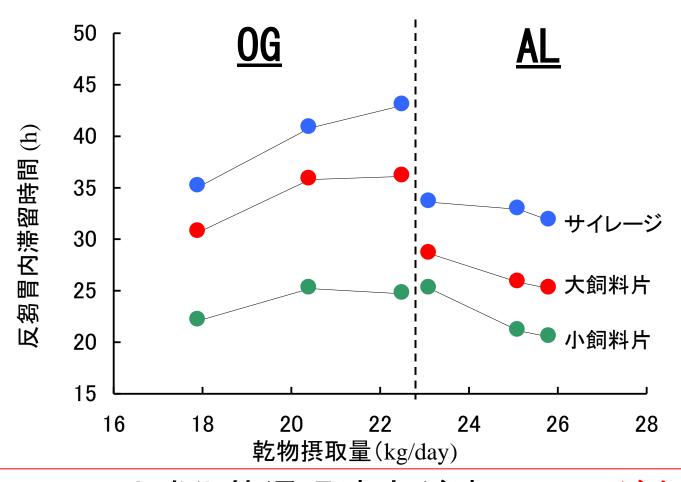

図、アルファルファ給与区 (◆;n=7)、グラス給与区 (■;n=6)、コーン+アルファルファ給与区(▲;n=4)の乾物摂取量と乳量分娩後の粗濃比: 50:50(グラス、アルファルファ)、60:40(コーン). 分娩前の粗濃比: 70:30(各給与区とも)

図、アルファルファ給与区 (◆;n=4) とコーン+アルファルファ給与区(▲;n=4)の乾物摂取量と乳量

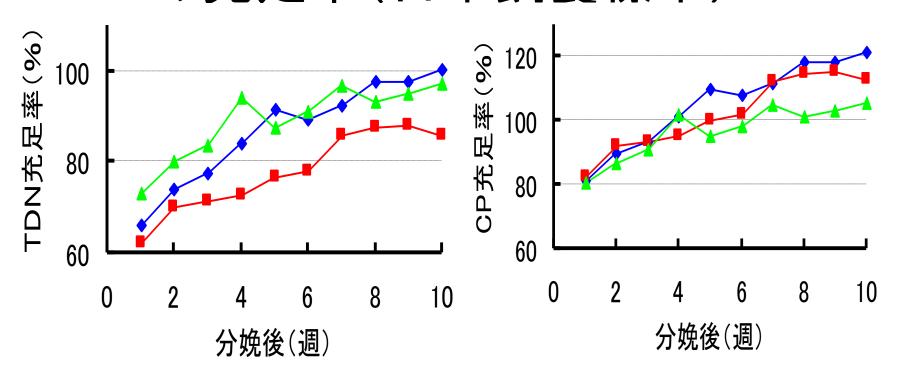
高泌乳牛:分娩直後の乳量の急増が特徴


図、アルファルファ給与区 (◆:n=4) とコーン+ アルファルファ給与区(▲:n=4)の血液成分

分娩直後における血漿中遊離脂肪酸の急増・グルコースの低下とその後の回復


泌乳牛の体重とDMI/体重:

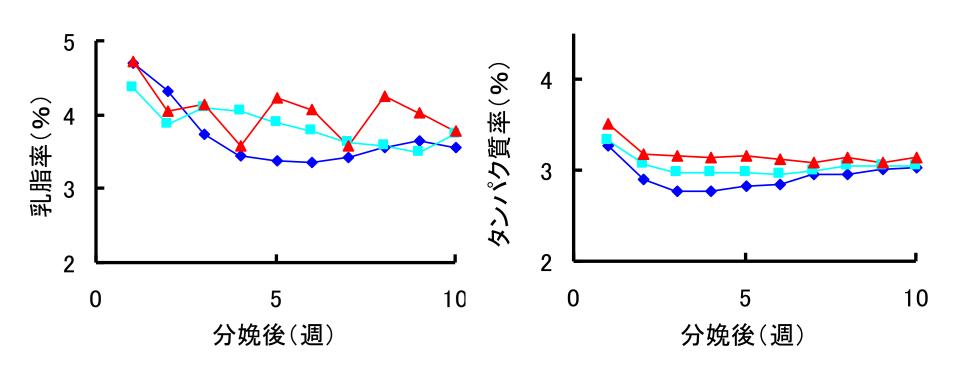
目標: 泌乳前期のDMI/体重を4%以上


図、アルファルファ給与区 (◆;n=7)、グラス給与区 (■;n=6)、コーン+アルファルファ給与区(▲;n=4)

アルファルファとグラスサイレージ給与牛の乾物摂取量と反芻胃内滞留時間の関係(上田ら、2004)

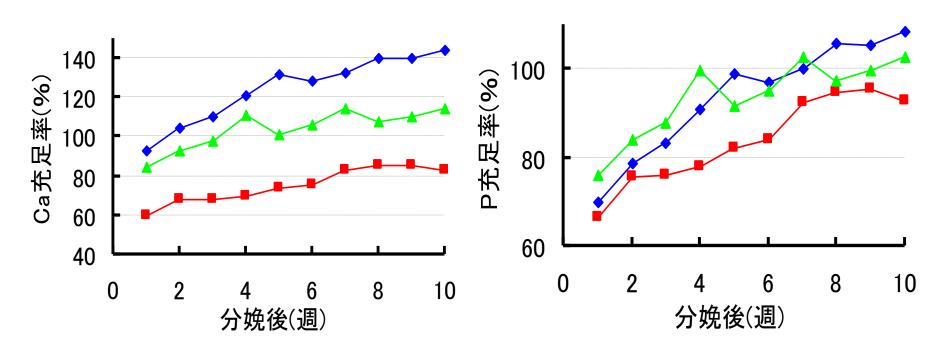
アルファルファは消化管通過速度が速い: DMIが多い サイレージ(約2cm),大飼料片(5mm),小飼料片(1mm)

泌乳牛のエネルギーとタンパク質の充足率(日本飼養標準)



図、アルファルファ給与区 (◆;n=7)、グラス給与区 (■;n=6)、 コーン+アルファルファ給与区(▲;n=4)のTDNとCP充足率

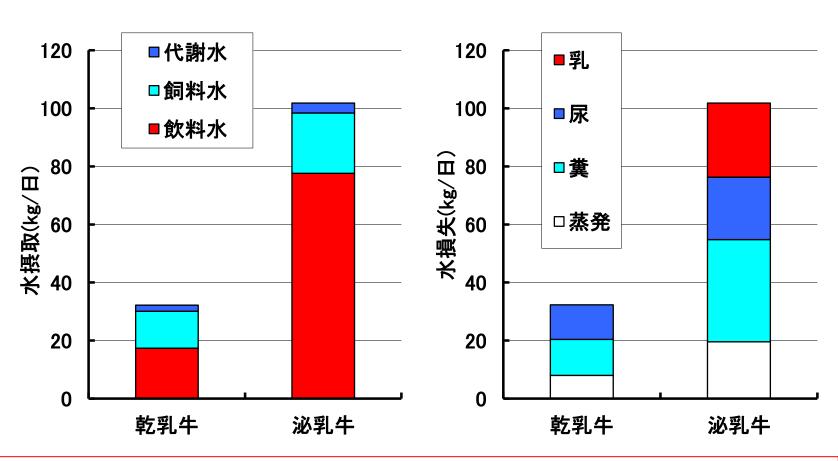
グラス給与区では乳量が少なく、TDNの充足率も低い


周産期の栄養管理でもつとも問題の多い飼養法

泌乳牛へのアルファルファと コーンサイレージ給与

図、アルファルファ給与区 (◆;n=7)、グラス給与区 (■;n=6)、コーン+アルファルファ給与区(▲;n=4)の乾物摂取量と乳量 粗濃比: 50:50(グラス、アルファルファ)、60:40(コーン).

泌乳牛のCaとPの充足率 (日本飼養標準)


図、アルファルファ区 (◆;n=7)、グラス区 (■;n=6)、コーン+アルファルファ区(▲;n=4)のTDNとCP充足率

ミネラルではPの充足率が低い

表,アルファルファ給与牛の繁殖成績(山田ら)

	グラス区	アルファルファ区
例数	14	13
初回排卵、日	35 ± 18	37 ± 19
受胎までの日数	94 ± 33	102 ± 30
受精回数、回	1.4 ± 0.7	2.0 ± 0.9
受胎頭数	13/14	12/13

図、乾乳牛と泌乳牛(乳量:29.5kg) の水摂取量と水損失量

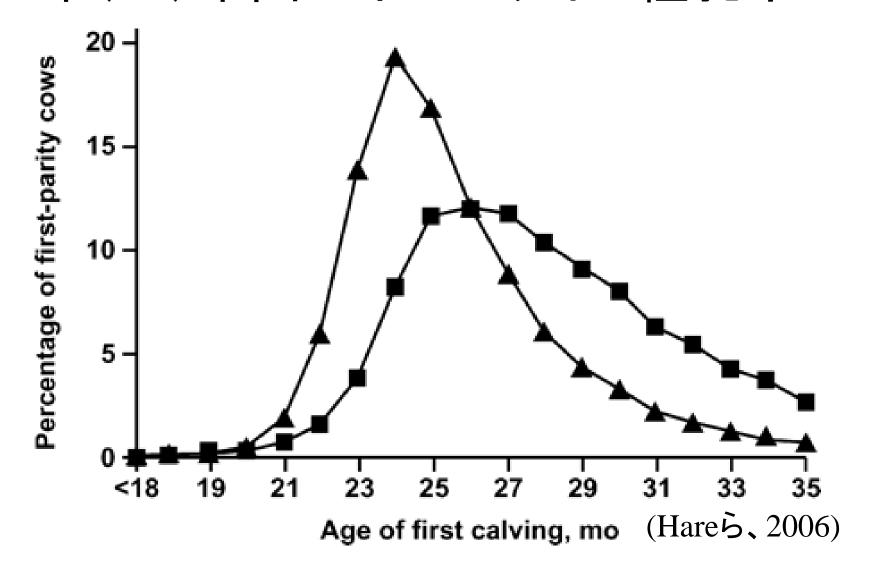
乳牛は分娩直後に大量の飲料水を必要とする

表、乾物摂取量、水摂取量(飼料水+飲水) (TWI)と飲水量(DWI)の比較(kg/日)

	乾乳牛	泌乳牛	泌乳牛/乾乳牛
DMI	7.7	20.7	2.69
TWI	30.3	98.4	3.25
DWI	16.0	77.6	4.85

分娩前と比較して、泌乳牛では乾物摂取量の 増加率よりも飲水量の増加率が高い: 水が飲めないと代謝異常になる

初産牛と経産牛の栄養管理と周産期病の予防

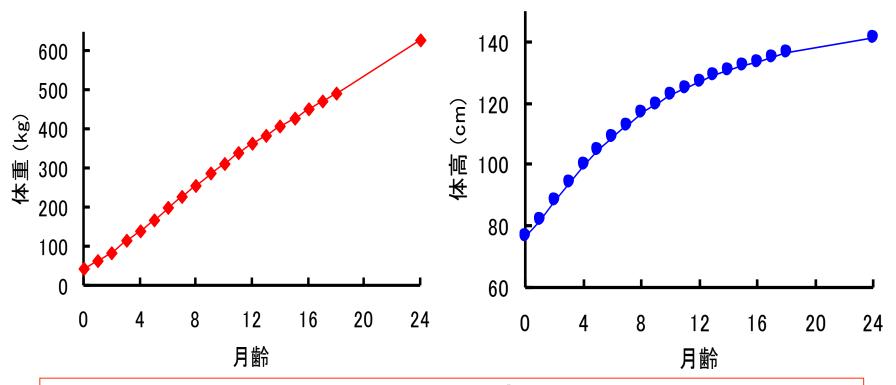

・周産期病の予防は初産牛と経産牛で大 きく異なる

牛群検定:初産月齢(25.6ヶ月)、

平均産次(2.7産)

- ・初産月齢の早期化(21ヶ月齢)
- ・生涯生産性の向上(平均産次の延長)

初産月齢の早期化:1980年(■)と2004 年(▲)米国のホルスタイン種乳牛


表、初産月齢の違いによる乳生産

月齡	24.5	22.0	21.3	
頭数	84	65	85	
增体率, kg/日	0.68	0.83	0.94	
分娩時体重,kg	550	529	520	
初産乳量,kg/日	9873	9620	9387	
頭数(2産)	50	40	63	
2產乳量,kg/日	11030	10940	11116	

(Van Amburgh 5, 1998)

初産月齢早期化(21ヶ月齢):乳生産、繁殖などに問題なければ、コスト低減の効果が大きい高タンパク質・低脂肪の飼料:体高に効果

育成牛の体重、体高の変動 (北農研、1994-1997年: n=40)

12ヶ月齢:体重(366kg)、体高(127cm)

受精開始時の目安:体重(350kg)、体高(125cm)

乳量と体重の産次による変動

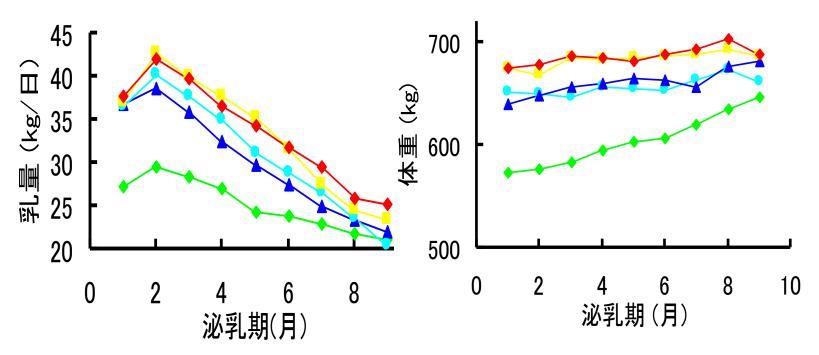
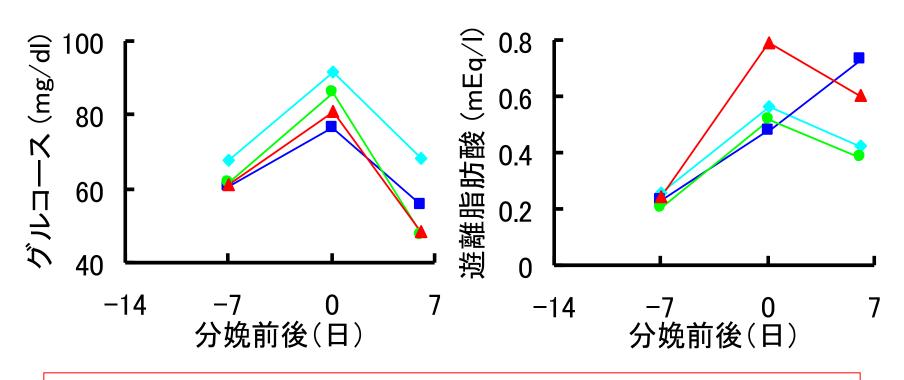


図. 初産 (◆), 2産 (▲), 3産 (●), 4産 (■), 5産以上 (◆) の乳牛(n=125) の乳量と体重(1994-1997年: 北農研)


初産牛は泌乳前期に適切な増体が非常に重要: 受胎率低下(淘汰要因)

表、乳牛と子牛の分娩直後の体重


	初産	2産	3産	4産以上
例数	27	14	8	14
月齡	25.5	38.2	49.1	76.0
妊娠期間,日	282	282	281	284
体重, kg	602c	648b	666b	762a
生時体重, kg	43.3b	47.0a	47.9a	47.7a

a,b,c P<0.05

栄養管理が良ければ、1年1産も可能 初産牛の栄養改善は分娩時の難産を減らす 図1、初産(◆)、2産(■)、3産(●)および 4産以上(▲)の牛の乳量と体重(n=65)

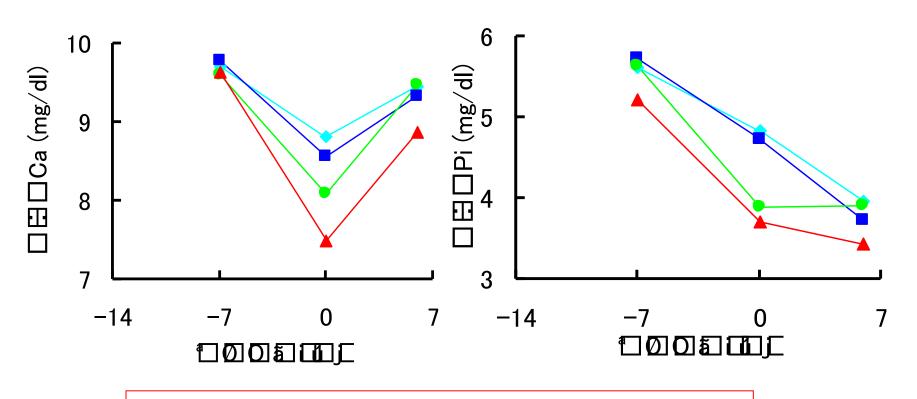


図2、初産(◆)、2産(■)、3産(◆)および 4産以上(▲)の牛の血漿中グルコースと 遊離脂肪酸濃度(n=65)

老齢牛になると、脂肪肝・ケトーシスになりやすい

図3、初産(◆)、2産(■)、3産(●)および 4産以上(▲)の牛の血漿中CaとPi濃度

3産以上になると、乳熱になりやすい

表3、乳牛の分娩直後の血液成分 (a,b,c < 0.05)

	初産	2産	3産	4産以上
グルコース,mg/dl	91.7a	76.8b	86.1ab	81.4b
NEFA,mEq/1	566b	479b	520b	793a
インシュリン, μU/ml	9.2	6.9	5.5	5.7
Ca,mg/dl	8.8a	8.6ab	8.1bc	7.5c
Pi,mg/dl	4.8a	4.7ab	3.9bc	3.7c
PTH,pg/ml	166b	425b	385b	1012a

老齢牛ではPTHの分泌量が多くても低Ca血症になる 3産以上ではケトーシス、脂肪肝、乳熱になりやすい

移行期の初産牛と経産牛の栄養管理

- <mark>初産牛: 成長段階にあることと初産乳量の増加が</mark> 顕著なため、受胎しない牛が増加

エネルギーの早期充足:受胎率向上、難産防止

•経産牛:乳量増加による移行期の疾病増加、繁殖成績の低下が顕著(適応の遅れ:老化)

ケトーシス、脂肪肝、乳熱などの疾病予防を考慮 した栄養管理改善による効果が大きい