#### **VISUALIZATION LABORATORY**

ACADEMIC CENTER FOR COMPUTING AND MEDIA STUDIES KYOTO UNIVERSITY, JAPAN 16 DECEMBER 2004

#### 3D VIDEO COMMUNICATION FOR VIRTUAL REALITY TELECOMMUNICATION SYSTEM (VRTS)

Nor <u>Azhar</u> Mohd Arif VRTS Research Group Multimedia University Cyberjaya Campus



## **Presentation Outline**

- Overview
- Research Objectives
- First Prototype
- Experimental Setup
- Evaluation Booths
- Completed Works & Results
- Future Works



### **Overview**

- to realize VRTS for the audio and visual information
- users shall feel as if they were having face-to-face conversation through a window
- application of 3D video technologies especially through cameras display systems
- the 3D effects perceived are to enhance the accuracy of visual information



# Research Objectives

- to come out with basic hardware and system design specifications
- through several tests and evaluations on experimental system
- first prototype development based on basic specifications
- testing and performance evaluations of first prototype towards second prototype development



# First Prototype

#### System Components of 3d Videophone for Audio and 3d Video Information

| System component     |       | Type of information                                              |          |                                                                   |  |
|----------------------|-------|------------------------------------------------------------------|----------|-------------------------------------------------------------------|--|
| component            | Audio |                                                                  | 3D video |                                                                   |  |
| Sensor<br>Processing | •     | Microphones Audio mixer MPEG-2 encoder & decoder Power amplifier | •        | 3D camera Video Mixer MPEG-2 encoder & decoder Video line doubler |  |
| Actuator             | •     | <mark>Speak</mark> ers                                           | •        | 3D LCD monitor                                                    |  |



Illustration of a notebook PC as the core hardware for the proposed 3D videophone.



# **Experimental Setup**

- one-way setup: adopted in our first set of evaluations
  - works completed
- two-way setup: current experimental setup and to be adopted in coming system testing and evaluations
  - this setup is installed in evaluation booths



# **Experimental Setup**

## System Components of 3d Videophone for Audio and 3d Video Information

| System component     | Type of information                                                                                                          |                                                                                                                                        |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| component            | Audio                                                                                                                        | 3D video                                                                                                                               |  |  |
| Sensor<br>Processing | <ul> <li>Microphones</li> <li>Audio mixer</li> <li>MPEG-2 encoder</li> <li>&amp; decoder</li> <li>Power amplifier</li> </ul> | <ul> <li>3D camera</li> <li>Video Mixer</li> <li>MPEG-2 encoder</li> <li>&amp; decoder</li> <li>Video line</li> <li>doubler</li> </ul> |  |  |
| Actuator             | <ul> <li>Speakers</li> </ul>                                                                                                 | • 3D LCD monitor                                                                                                                       |  |  |



### **Evaluation Booth**

- to emulate communication between two persons at distant apart
- built in research laboratory with sufficient level of sound proof capability
- interior surroundings that are conducive, comfortable, safe and effective for lengthy evaluations
- installed with the 3D system and other necessary audio visual systems for monitoring purposes



## **Evaluation Booth**









# **Evaluation Booth**





# Completed Works 1

- comparison between 2D & 3D video which one can represent information much closer to natural conversation
- subjective assessment, comparison scale, 30 assessors
- assessors were shown a recorded sample of a person having conversation
- evaluation done based on assessors own judgement



## Results 1

#### COMPARISON SCALE

| COMPTINIDON SCREE |                 |  |  |  |
|-------------------|-----------------|--|--|--|
| Scale             | Quality         |  |  |  |
| -3                | Much worse      |  |  |  |
| -2                | Worse           |  |  |  |
| -1                | Slightly worse  |  |  |  |
| 0                 | The same        |  |  |  |
| +1                | Slightly better |  |  |  |
| +2                | Better          |  |  |  |
| +3                | Much better     |  |  |  |



The average scale of each evaluation item.



# Completed Works 2

- evaluation of transmitted 3D video due to emulated ATM network impairments
- cell error rate (CER), cell loss rate (CLR), cell misinsertion rate (CMR), cell delay variation (CDV) and cell transfer delay (CTD) introduced through ATM impairment emulator
- subjective assessment, 21 assessors, five-grade scale and similar recorded sample as in previous evaluation



## Results 2

#### ITU-R QUALITY AND IMPAIRMENT SCALES

| Five-grade scale |                                 |  |  |  |
|------------------|---------------------------------|--|--|--|
| Quality          | Impairment                      |  |  |  |
| 5 Excellent      | 5 Imperceptible                 |  |  |  |
| 4 Good           | 4 Perceptible, but not annoying |  |  |  |
| 3 Fair           | 3 Slightly annoying             |  |  |  |
| 2 Poor           | 2 Annoying                      |  |  |  |
| 1 Bad            | 1 Very annoying                 |  |  |  |



Overall Performance of audio and 3D video due to all 5 categories of ATM network impairment according ITU-T Recommendation Performance Objectives.



## **Future Works 1**

- qualitative and quantitative evaluations of the two-way experimental setup
- qualitative categories:
  - (i) reliability, (ii) level of comfortable and (iii) user friendly
- quantitative categories:
  - (i) efficiency, (ii) precision of information and (iii) comprehension level of information



## Future Works 2

- system testing and performance evaluation through available broadband networks
- range of speed e.g. 384kbps to 2Mbps for TMNet Streamyx.
- to be performed using the evaluation booths
- evaluation to be done by two assessors communicating at real time basis



### Future Work 3

- investigation on the optimum lenses
   separation for 3D camera system
- figure out the best camera position to minimized the occurrence of loss of eye contact in video communication
- this work require special hardware
- currently at the initial stage of hardware development



## VISUALIZATION LABORATORY ACADEMIC CENTER FOR COMPUTING AND MEDIA STUDIES

KYOTO UNIVERSITY, JAPAN 16 DECEMBER 2004

# THE END

Thank you for your kind attention

