高温時の家畜の防暑対策

久米新一

家畜からのメタン発生量の低減

- 1. 乳牛・肉牛の生産性向上
- 2. 品質の良い(繊維の少ない)粗飼料、 濃厚飼料の利用
- 3. 添加物(脂肪酸カルシウムなど)、機能性飼料(オリゴ糖など)の利用

現状の6%低減を目標

表、米国の乳牛のメタン発生量 抑制効果(EPA,2000)

	1960	1990
乳量(kg/年)	3195	7000
1頭当メタン発生量(kg/年)	76. 1	114. 6
乳量当メタン発生量(g/kg)	24	17
乳牛頭数(百万頭)	17. 5	10. 1
年間総乳量(百万t)	55.9	65. 6
メタン発生量 (Tg)	1. 33	1. 16

表、農業からのメタン発生量 削減の予測(IPCC,1995)

発生源	推定発生量 (Mt/年)	削減ポテン (Mt/年)	シャル(%)
反芻家畜	80 (65–100)	29 (12–45)	36
家畜排泄物	14 (10–18)	3 (2–7)	21
水田	50 (20-60)	20 (8-35)	40
バイオマス燃焼	22 (11–33)	6 (1. 5–4. 5	5) 27
合計	166 (106–211)	58 (24-92)	35

表、反芻家畜のメタン発生量 抑制効果の予測(IPCC,1995)

方法メタン発生抑制量

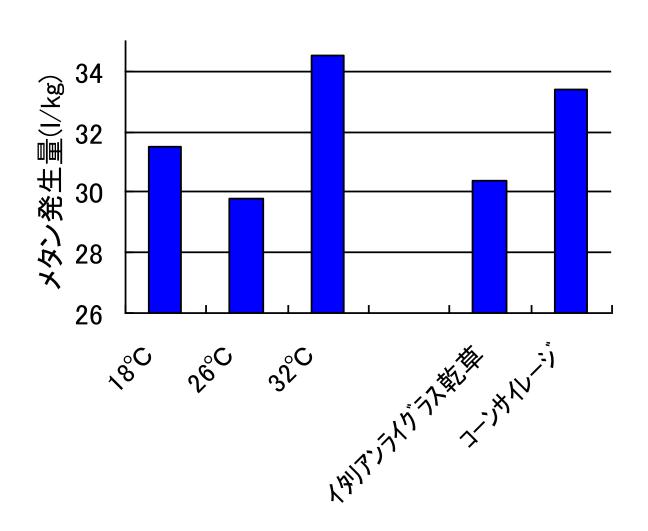
飼料の品質向上

25 (10-35) Mt/年

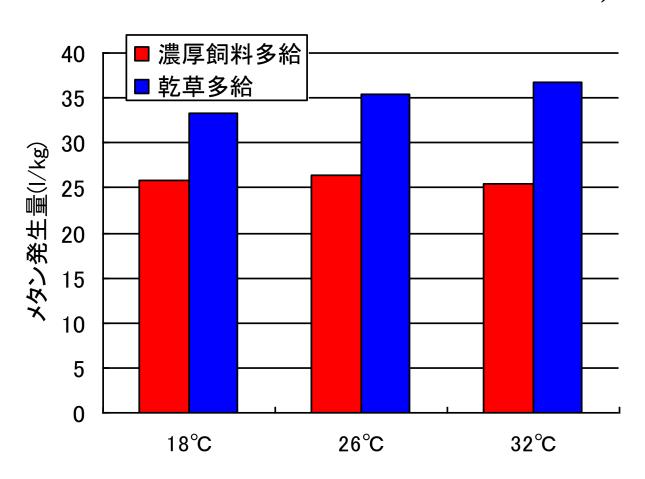
と栄養バランス

飼料の消化率向上 2(1-3)

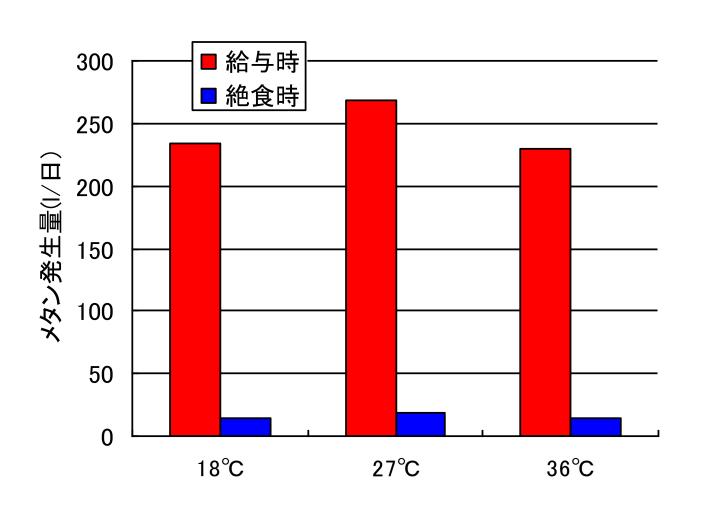
生產增進剤投与 2(1-6)


家畜改良 ---

繁殖効率向上 ---

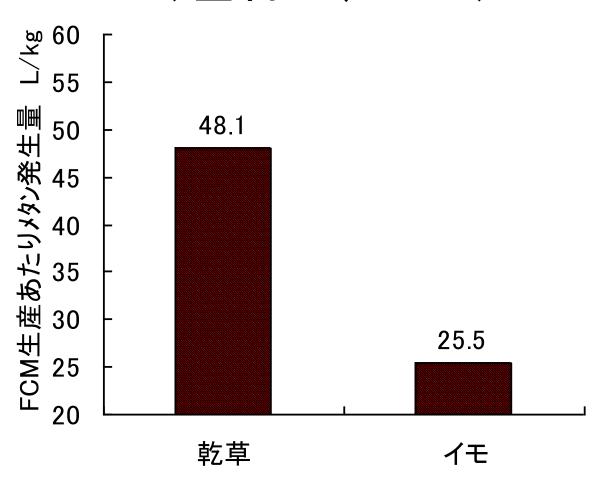

高温時におけるメタン発生

- 環境温度が上昇すると、消化率に関係なく メタン発生量が増加する
- ・給与飼料、飼料の通過速度・消化率などによって異なり、濃厚飼料給与により減少する
- ・ 熱帯・亜熱帯では低質粗飼料の利用により、メタン発生量が増加

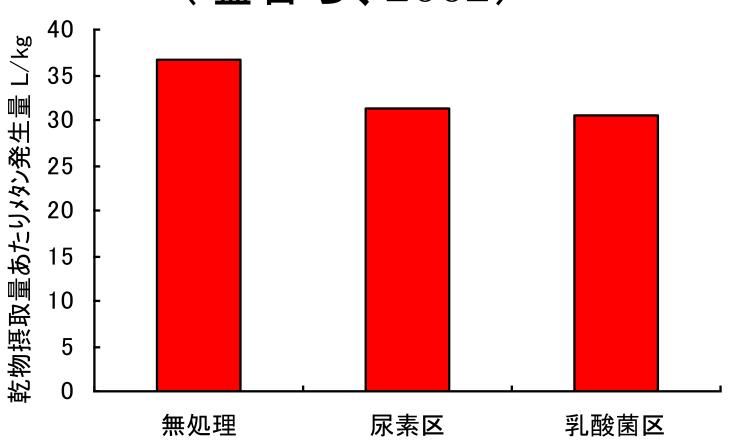

乾乳牛のメタン発生量に及ぼす環境温度と粗飼料の影響(栗原ら、1995)

※乳牛のメタン発生量と環境温度、 飼料の関係(栗原ら、1995)

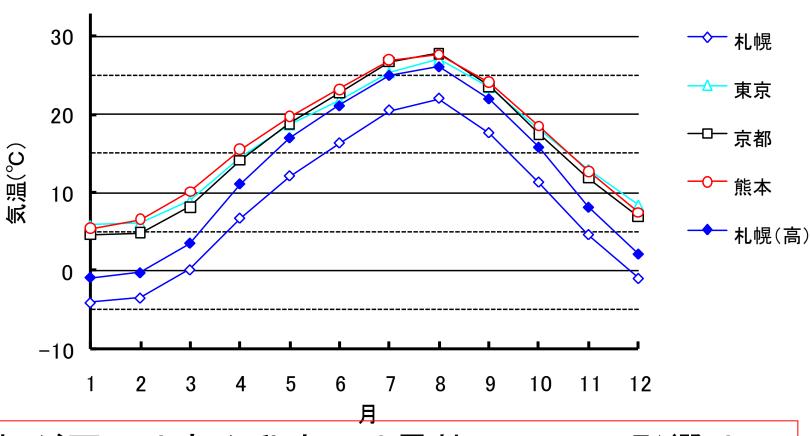
乾乳牛のメタン発生量と環境温度、 絶食の関係(柴田ら、1989)



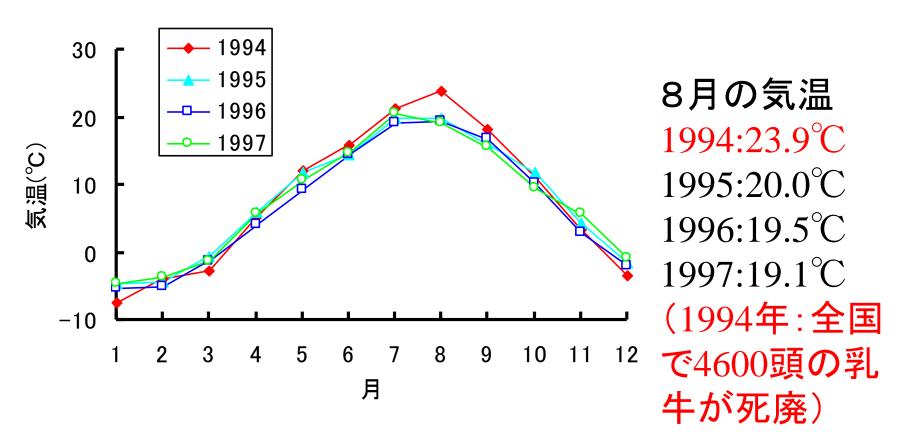
表、乳牛の乾物摂取量、メタン発生量 (1/日)と環境温度(栗原ら、1996)


環境温度		DMI(kg/日)			
	5	10	15	20	25
18°C	174	312	450	587	725
30-32°C	197	331	465	599	733
	(113)	(106)	(103)	(102)	(101)

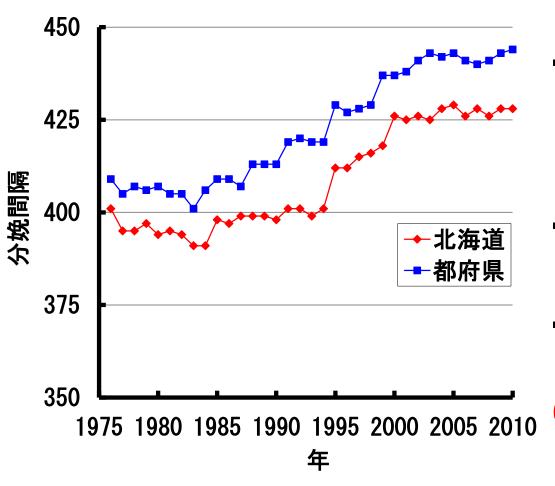
()内は18℃に対する百分率


イモ類給与によるメタン抑制効果(塩谷ら、2002)

稲ワラ給与に尿素処理、乳酸菌添加によるメタン抑制効果 (塩谷ら、2002)



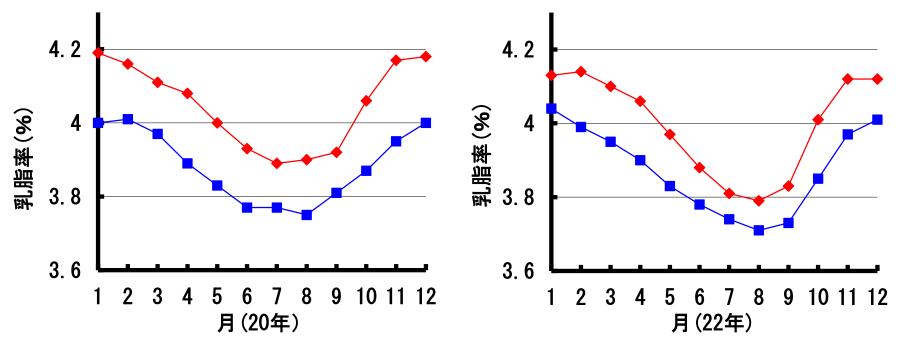
暑熱ストレスの影響:日本 (1970-2000年)の平均気温と最高気温



わが国では高泌乳牛では暑熱ストレスの影響は 20℃程度から生じる:夏季の高温多湿の影響

札幌・北農研(1994-1997年)の気温

都府県と北海道の乳牛の分娩間隔



- •分娩間隔:平22年
 - 428日(北海道)
 - 444日(都府県)
- ・分娩間隔は猛暑の 年に上昇する
- ・分娩間隔はその後回復しない

(猛暑の1994年:10日 以上の上昇)

(牛群検定成績)

都府県(□)と北海道(◆)の乳脂率 夏季・猛暑における乳脂率の低下

(牛群検定成績:平成20年と猛暑の22年)

都府県と北海道の分娩間隔の変動と近似している

暑熱時の生理特性

暑熱時の生理特性を把握するために、家畜の直腸温、呼吸数、心拍数などを測定

 \downarrow

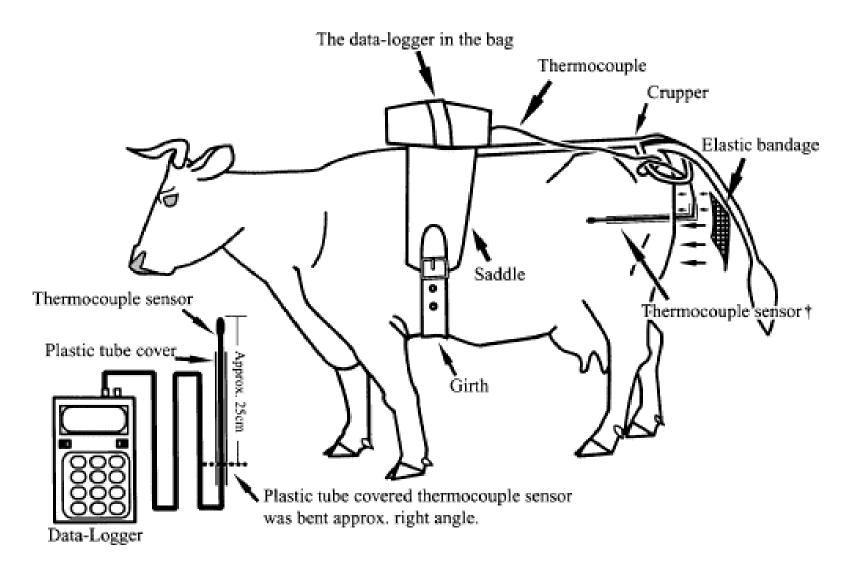
直腸温:恒温動物では体温がすべての部位で 一定でなく、体の深部より外表で低くなる。 体の深部の温度(核心温度)はほぼ一定 で、直腸温は測定が容易なためよく使われ る。

家畜の生理特性

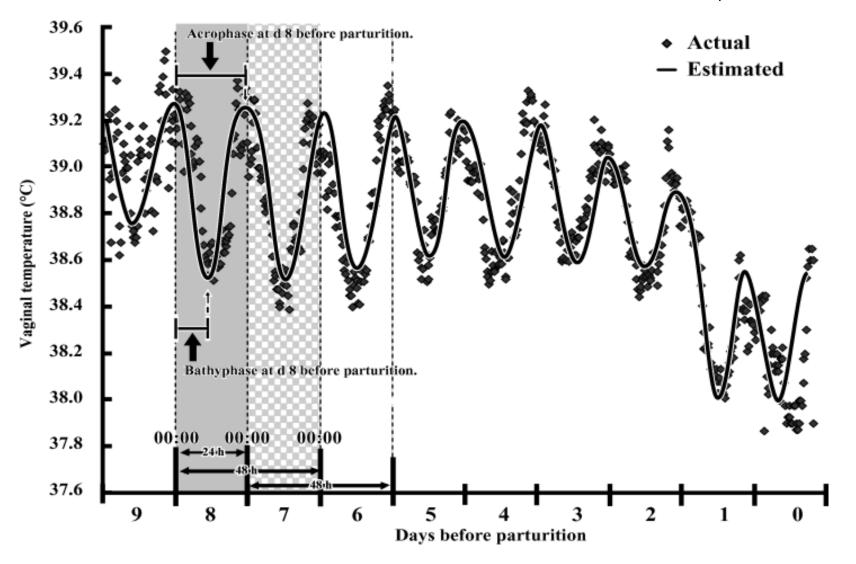
	直腸温	心拍数	呼吸数
	(°C)	(回/分)	(回/分)
鶏	41.7	200-300	20-40
豚	38.9	55-86	10-25
乳牛	38.5-39.5	60-70	15-40
羊•山羊	39.1		
馬	37.7		

家畜の適温域と生産限界温度(℃)

	家畜 適温域		
外田 		低温側	高温側
搾乳牛	0~20	-13	27
哺乳子牛	13~25	-5	30-32
育成牛	4 ~ 20	-10	32
育成牛	10~20	-10	30
(黒毛和種			
ヒツジ	-3 ~ 23	-13	27


自然環境下における環境変動の 影響調査

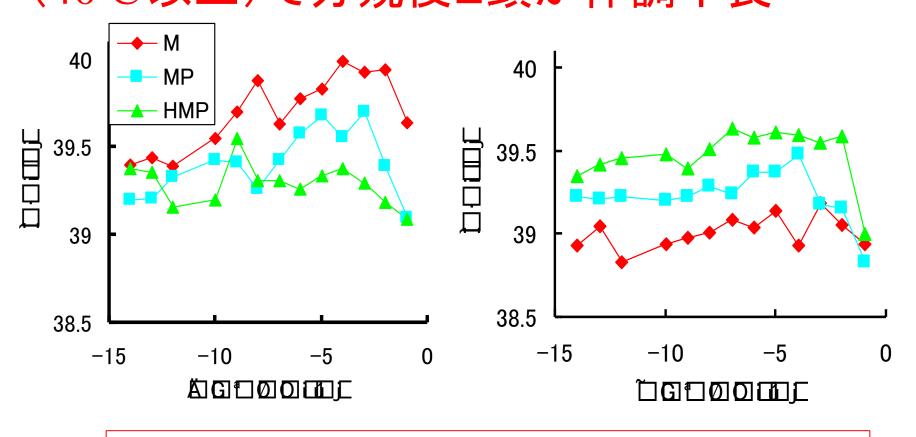
- ・自然条件下では1日あるいは1月の環境 条件が大きく変わるため、自然条件下での 調査・試験が必要(人工気候室では設定 条件下で精度良く調べることが可能)
- 長期にわたる暑熱ストレスの影響を調べる場合には、自然環境下の試験が適している(防暑対策の開発などにも)


家畜の体温

- 家畜では温度が変化しにくい深部温(直腸温)を利用(皮膚温は変わりやすい)
- 体温は熱発生量と熱放散量(放射、伝導、 対流、蒸発)の関係
- 体温は変動要因(個体差、環境温度、飼料、日内変動など)が多い
- 簡易な分娩予知法:分娩前の体温の低下 (0.5℃程度)を利用(日内変動が1℃程度あるので、決まった時刻に測定する)

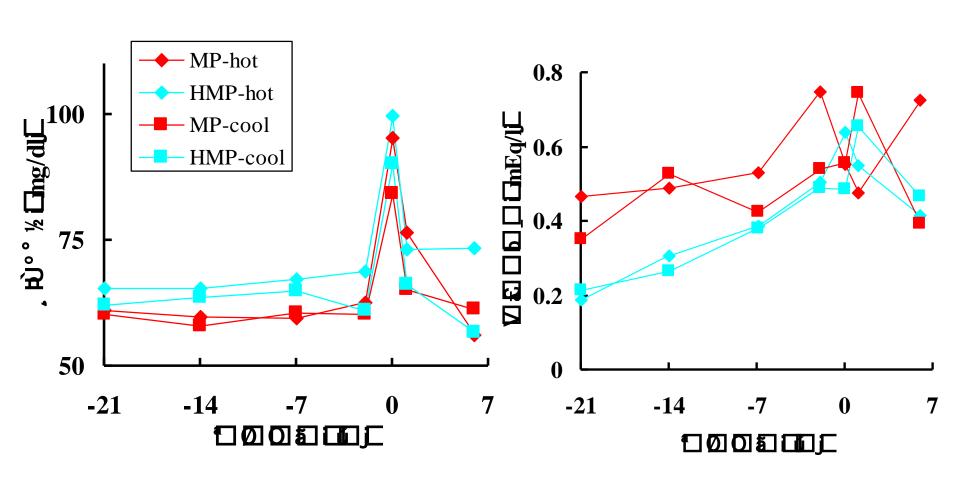
Fig. 1. Data-logging apparatus and animal was instrumented with it for measuring vaginal temperature (VT). (青木ら)

分娩前の牛の膣温の変動 (青木ら、Anim.Sci.J.77:290-299, 2006)



表、妊娠牛の分娩前の乾物摂取量(分娩4週間前から分娩時まで給与)

		夏季	<u>.</u>	利	火季	
	М	MP	HMP	M	MP	HMP
例数	4	8	4	4	8	4
妊娠期間、日	284	281	281	285	282	283
体重、kg	663	664	679	560	651	665
增体率,kg/日	0.21	0.17	1.35	0.17	0.79	0.80
DMI、kg/日	6.09	8.50	10.4	6.04	8.63	10.3


夏季分娩牛の増体率の低下が問題

図、夏季及び冬季分娩牛の直腸温(15:30)の変動:夏季の栄養不足による体温上昇(40℃以上)で分娩後2頭が体調不良

夏季分娩牛の不完全な熱放散による体温上昇

図、乳牛の血漿中成分の変動

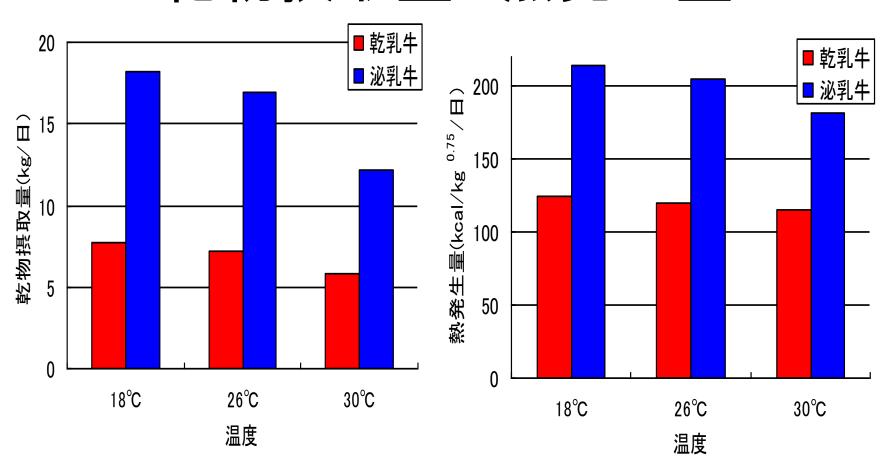
表、供試牛の血漿・初乳中ミネラル濃度

M	夏季 MP	HMP	M	秋季 MP	HMP 愈	<u></u>	
血漿、mg/dl Ca 9.81 Pi 5.45 Mg 2.03 初乳、mg/d Ca 201 P 183 Mg 36	9. 72 4. 89 2. 13 1 164 152 27	9. 69 4. 78 2. 19 192 169 35	9. 70 5. 07 2. 22 210 203 43	9. 83 4. 85 2. 18 247 214 48	9. 99 4. 26 2. 04 233 295 42	NS NS NS NS	NS NS NS ** **

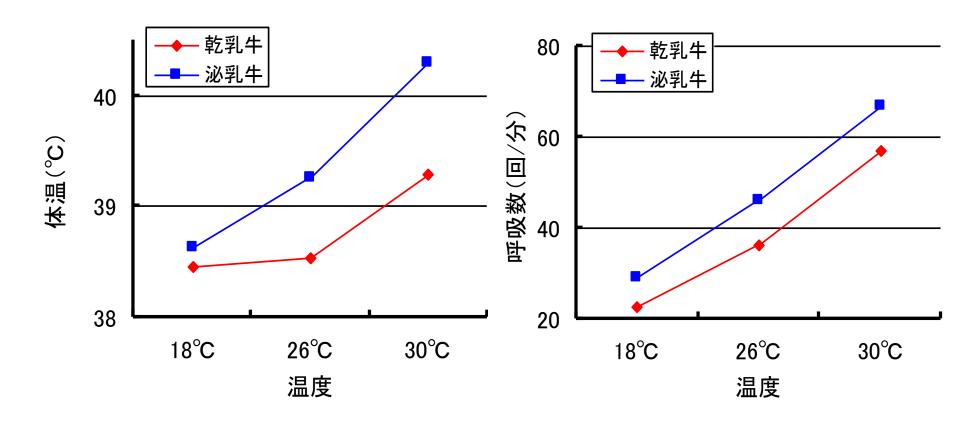
^{*}P<0.05, **P<0.01, ***P<0.001

人工気候室による環境制御

- ・ 温度、湿度、風速、光などを調節して、環境の変動による動物の生理機能の変動を調べる(一定条件下で代謝試験と組み合わせて、動物のエネルギー、栄養素の代謝を調べることも多い)
- 地球温暖化の影響では、温度と湿度を変えた実験が多い(温度:10-40℃、湿度:40-100%など)

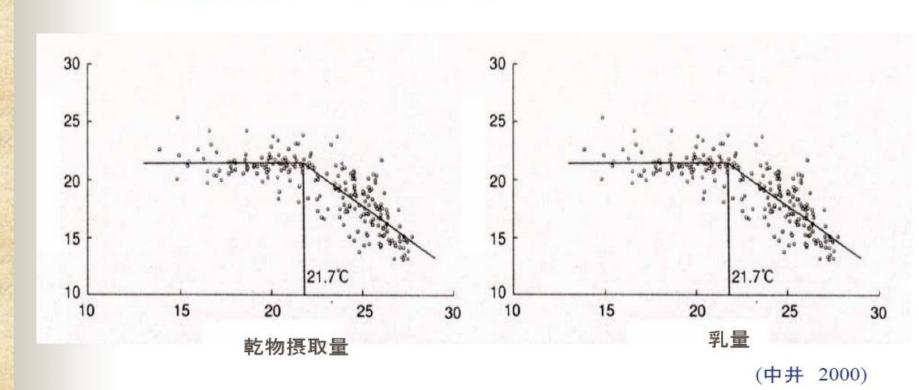

環境制御室における泌乳牛の体温(試験1)

	環境温度			
	18°C	2 6 °C	3 0°C	
体重、kg	589a	581a	548	
DMI、kg/日	18. 2a	16. 9a	12. 2b	
粗飼料、kg/日	8. 5a	7. 2a	3. 5b	
乳量、kg/日	26. 0a	25. 2a	19.7b	
体温、℃	38. 6b	39. 1b	40. 3b	
呼吸数、回/分	29. 2c	46. 2b	66.8a	


環境制御室における泌乳牛の体温(試験2)

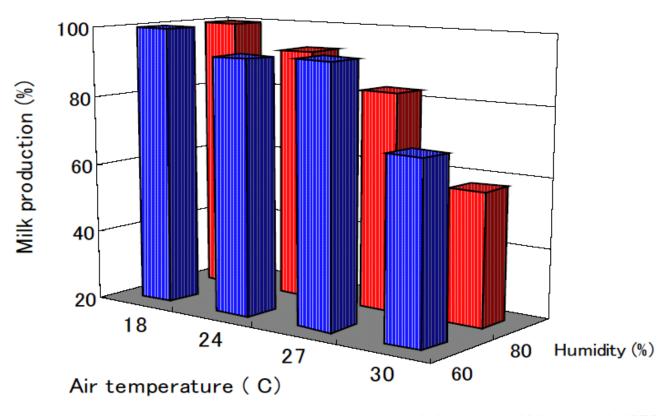
	環境温度			
	18°C	2 6 °C	3 0°C	
体重、kg	561a	543b	528c	
DMI、kg/日	18. 1a	14. 8ab	12. 1b	
粗飼料、kg/日	6. 1a	4. 5ab	3. 7b	
乳量、kg/日	23. 5a	20. 1ab	16. 9b	
体温、℃	38. 4c	39. 3b	40. 3a	
呼吸数、回/分	33.7c	58. 3b	73. 1a	

図、乾乳牛と泌乳牛の乾物摂取量と熱発生量


図、乾乳牛と泌乳牛の体温・呼吸数


表、牛の発汗量(g/m²/hr)と イオン成分(mg/m²/hr)

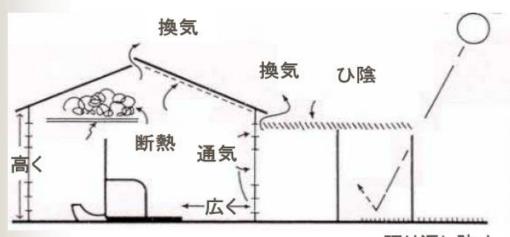
			<u> </u>		<u> </u>	
温度	Na	K	CI	Ca	Р	発汗量
(°C))					
1 5	3. 13	2. 25	3.94	2. 68	0. 24	5. 75
2 5	4. 49	8. 56	5.94	1. 45	0.14	25. 50
3 5	9.46	15. 18	9. 74	3.86	0.09	66.00


泌乳牛の乾物摂取量と乳量に及ぼす 体感温度(ET)の影響

乳量に及ぼす風速の影響

乳量に及ぼす気温と湿度の影響

(Johnson and Vanjonack 1976)


泌乳牛のCa出納(mg/kg体重/日)

		環境温度			
		18°C	26°C	30°C	効果
試験 1	摂取量	203	200	174	*
	吸収量	34	38	22	*
	蓄積量	-15	-9	-15	NS
試験 2	摂取量	412	353	293	*
	吸収量	132	119	121	NS
	蓄積量	66	61	72	NS

^{*}P<0.05, NS 有意差なし

どうやって暑熱ストレスを軽減するか

- 物理的暑熱対策技術・・・基本は体温上昇抑制
 - ・牛舎環境改善・・・ひ陰、日除け、断熱、通風、屋根上散水、霧状散水等
 - ・牛からの熱放散の促進・・・送風、スポットエアコン、牛体散水、気化冷却等
- 飼料給与技術改善···緩衝剤利用、油脂利用、繊維·蛋白質給 与量制御等

照り返し防止

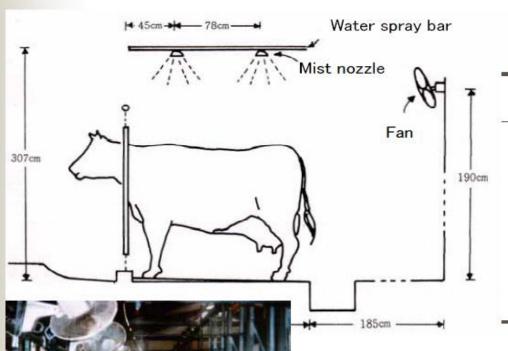
ひ陰と緩衝剤の効果(Schneider, 1984)

		DMI(kg/日)	乳量(kg/日)
日除	けあり	20. 7a	19. 4a
	なし	16. 8b	17. 0 b
NaHC	$0_3 0$	18. 1b	17. 9b
	0.85%	19. 4a	18. 5a
K	1.0%	19. 1	18. 0b
	1. 5%	18. 5	18. 5a

a, b P<0.05

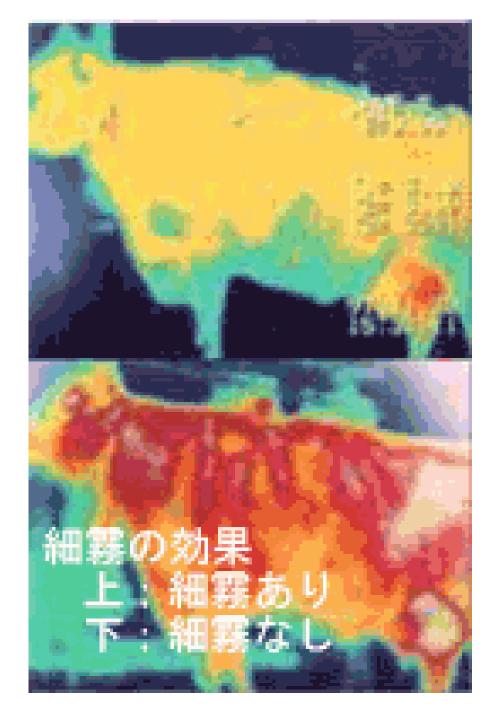
緩衝剤の効果(Schneider, 1984)

		DMI	乳量	乳脂率	蛋白質率
		(kg/日)	(kg/日)	(%)	(%)
NaHCO ₃	0	17. 9	18. 9b	3. 42	3. 57
	1.0%	18. 5	20. 1a	3. 56	3.54
NaCl	0	18. 4	19. 2	3.49	3. 58
	0. 73%	18.0	19.8	3.50	3. 52
K	1.3%	17. 8b	19. 1b	3. 50	3. 60a
	1.8%	18. 6a	19.8a	3. 48	3. 50b


a, b P<0.05

• 暑熱対策

物理的暑熱対策技術・・・牛からの熱放散の促進


改良型気化冷却装置の効果

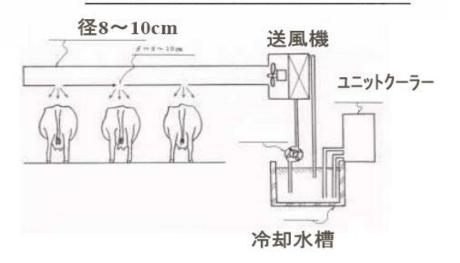
	Mist & Fan	Fan	Cont
BT, 14:00	39.3	39.6*	40.1**
BT,20:00	39.1	39.6*	40.1**
RR, 14:00	53	59*	69**
RR, 20:00	52	66	77**
Liveweight	597	594	594
Forage intake	9.39	9.25	8.65
Milk yield	20.3*	19.4	18.4**

BT, Body temperature; RR, Respiration rate

(Aii et al. 1988)

妊娠末期の暑熱対策の重要性: 気化冷却の活用 ・霧状散水の 効果

物理的暑熱対策技術・・・牛からの熱放散の促進


表24. ダクト送風による防暑効果 (斎藤ら、1991)

	昼間送風区	夜間送風区
乾物摂取量	±0 kg	+0.3
体重	+1.7 kg	+8.0
乳量	+1.03 kg	+1.12
乳脂率	+0.07 %	+0.02
SNF率	+0.02 %	+0.01
体温	-0.12 °C	-0.29
呼吸数	-3.9 回/分	-4.2

表25. 冷気送風による防暑効果 (斉藤ら、1989)

	無処理	区	冷気送風区	
採食時間	217. 7	分	300. 3	
乳量	30. 35	kg	32.28	
乳脂率	3. 47	%	3.46	
SNF率	8. 31	%	8.41	
体温	39. 75	$^{\circ}$ C	39.39	
呼吸数	64. 1	回/分	53.5	

放牧牛の防暑行動

- 夏季の放牧時(特に、猛暑時)に、熱射病による致死率が高い:ひ陰樹などの防暑施設・管理が必要
- ・ 飲水施設が必要: 飲水量の増加
- 放牧牛の行動:樹木が多くあっても、ある 特定の樹木に集まる特性などがある

 \downarrow

放牧家畜の行動を踏まえた管理

放牧牛の行動と防暑管理

