

フェルミ液体から弱い強磁性体創製

遍歴電子メタ磁性転移→Band磁性の証拠

SCR理論 The Self-Consistent Renormalization (SCR) Theory of Spin Fluctuations

The dynamical susceptibility:

$$\chi^{-}(q\omega) = \frac{\chi_0^{-}(q\omega)}{1 - I\chi_0^{-}(q\omega) + \lambda(q\omega)}, \quad (T > T_C)$$

The long wave approximation:

χ

$$\frac{\chi_0^{\rightarrow}(q\,\omega)}{\chi_0^{\rightarrow}(0,0)} = 1 - Aq^2 - B\left(\frac{\omega}{q}\right)^2 + iC\omega q + \cdots$$

Landau Expansion of Free Energy:

$$F(M) = \frac{1-\alpha}{2\chi_0}M^2 + \frac{1}{4}\overline{F_1}M^4 + \dots - 2\mu_B H \cdot M$$
$$\overline{F_1}M^2 = \frac{2\mu_B H}{M} + \frac{2(\alpha - 1)}{\rho}$$

Arrott Plots:

$$\lambda(q\omega) = \left(\frac{5\alpha}{2\pi\rho}\right)(1+\delta)F_{1_{q}}\sum_{q}\int_{0}^{\infty}d\omega\frac{1}{e^{\omega/T}-1} \cdot \frac{C\omega/q}{(\delta+Aq^{2})^{2}+(C\omega q)^{2}} \qquad \overline{F_{1}}\left[M(T,H)^{2}-M(T,0)^{2}\right] = 2\mu_{B}\frac{H}{M(T,H)}, \quad p_{s} = 2M(0,0)$$

$$\delta = \frac{\chi_{0}}{\alpha\chi} = \frac{1-\alpha+\lambda}{\alpha}$$

$$\lambda(q\omega) \approx \lambda(0,0) = \frac{5}{3}\chi_{0}gN_{0}^{2}S_{L}(T)^{2} = \frac{5}{3}\frac{\chi_{0}}{N_{0}}\overline{F_{1}}S(T)_{L}^{2} \qquad \left[-\frac{(\alpha-1)}{\chi_{0}} + \frac{5}{3}gN_{0}^{2}\overline{m}^{2}\right]M + gM^{3} = h$$

$$\frac{1}{\chi} = \frac{(1-\alpha)}{\chi_{0}} + \frac{5}{3}gN_{0}^{2}S_{L}(T)^{2} = \left[4N_{0}I^{2}S_{L}(T_{C})^{2}/3T_{C}T_{0}\right](T-T_{C}) \qquad m^{2} = m_{//}^{2} + m_{\perp}^{2} = S_{L}^{2} - \left(M/N_{0}\right)^{2}$$
Stoner Enhancement Factor: $\frac{1}{\sqrt{\alpha}} = \alpha = I\rho$

I: the intra-atomic exchange interaction, Q : the density of states at the Fermi level.

 $1 - \alpha$

$$\overline{m}^2 = \frac{3}{5} \left(3m_{//}^2 + 2m_{\perp}^2 \right)$$

磁化曲線,アロット・プロット

磁化曲線,アロット・プロット

Y(Co_{1-x}Al_x)₂ SCR理論: 磁化曲線, 逆带磁率

 $T^{4/3}$ -law

Y(Co-Al)2の弱い遍歴電子強磁性

金属中のNMRシフト(ナイトシフト)の測定例 (Pt)

FIG. 1. Knight shift as a function of temperature. Solid squares, low-temperature NBS measurements; solid triangles, our experimental results.

K- χ analysis $\chi(T) = \chi_{dia} + \chi_s + \chi_{orb} + \chi_{d,spin}(T)$ $K(T) = (K_{\text{dia}}) + K_{\text{s}} + K_{\text{orb}} + K_{\text{d.spin}}(T)$

FIG. 3. Plot of K vs χ . Dashed line, least-squares fit of Clogston *et al*. (Ref. 1).

 $K_{\rm d,spin}(T) = H_{\rm cp} \frac{\chi_{\rm d,spin}(T)}{\mu_{\rm B}}$

Pd: M. Takigawa and Yasuoka, JPSJ 51 (1982)787.

Fig. 3. Temperature dependence of the field for resonance of 105 Pd nuclei (H_{res}) in Pd metal at a fixed frequency of 10.7000 MHz.

$$\frac{1}{T_{1}} = \gamma_{N}^{2} A_{hf}^{2} T \frac{\chi}{4\pi^{2} \mu_{B} \Gamma_{0}}, \quad T_{0} = \frac{\Gamma_{0} q_{B}^{3}}{2\pi}$$

弱い遍歴電子強磁性体 (SCR)

スピン-格子緩和率,1/T₁

$$\left(\frac{1}{T_1}\right)_{SCR}^F \propto \frac{T}{M_0^2} \propto \frac{T}{T_c - T} \quad \left(T < T_c\right)$$

$$\left(\frac{1}{T_1}\right)_{SCR}^F \propto T\chi_0 \propto \frac{T}{T - T_c} \quad \left(T > T_c\right)$$

$$\frac{1}{T_1} = \gamma_N^2 A_{hf}^2 T \frac{\chi}{4\pi^2 \mu_B \Gamma_0}, \quad T_0 = \frac{\Gamma_0 q_B^3}{2\pi}$$
(M)

$$\left(\frac{1}{T_1}\right)_{SCR} \propto \frac{I\left(\frac{H}{H}\right)}{1 + \frac{AM^3}{H}}$$

 $\overline{A} = AN_0 / \rho, \quad T_A = \overline{A}q_B^2$

スピン-格子緩和率,1/丁

局在モーメント系

$$\langle S_L^2 \rangle = \frac{3k_B T}{N_0} \sum_q \chi_q = \frac{3k_B T}{N_0} \sum_{q,\omega} \frac{\operatorname{Im} \chi(q\omega)}{\omega}$$

$$\frac{1}{T_1} = 2\gamma_N^2 k_B T \sum_q A_q^2 \frac{\operatorname{Im} \chi(q\omega_0)}{\omega_0}$$

$$\frac{\operatorname{Im} \chi(q\omega)}{\omega} = \frac{\operatorname{Im} \chi(q\omega_0)}{\omega_0} f_q(\omega), \quad f_q(\omega) = \frac{1}{1 + (\omega/\omega_{ex})^2}$$

$$\chi_q(\approx \chi_0) \propto \int_0^\infty d\omega \frac{\operatorname{Im} \chi(q\omega)}{\omega} = \pi \frac{\operatorname{Im} \chi(q\omega_0)}{\omega_0} \cdot \omega_{ex}$$

$$\langle \{S_+(t) S_-(0)\} \rangle = \frac{3}{2} S(S+1) \exp\left(-\frac{1}{2}\omega_{ex}^2 t^2\right)$$

$$\omega_{ex}^2 \left(= 1/\tau_{ex}^2\right) = \frac{8zJ^2 S(S+1)}{3\hbar^2} \quad S(\omega_0) = \frac{4\pi S(S+1)}{3}$$

$$\frac{1}{T_1} = \frac{1}{T_2} = (2\pi)^{1/2} \left(\frac{A}{\hbar}\right)^2 \frac{S(S+1)}{3} \frac{1}{\omega_{ex}} = (2\pi)^{1/2} \left(\frac{A}{\hbar}\right)^2 \frac{S(S+1)}{3} \tau_{ex}$$

局在スピン系: Mn Heusler Alloy

スピン-格子緩和率,1/丁1

$$\frac{1}{T_1} = 2(\gamma_n A_{hf})^2 kT \sum_q \frac{\operatorname{Im} \chi(q\omega_0)}{\omega_0}$$

$$\frac{\operatorname{Im} \chi(q\omega)}{\omega} = \chi(q,0) f_q(\omega)$$

$$f_q(\omega) = \frac{\pi \Gamma_q}{\Gamma_q^2 + \omega^2} \qquad \frac{\operatorname{Im} \chi(q\omega_0)}{\omega_0} = \frac{\pi \chi(q,0)}{\Gamma_q}$$

$$\frac{1}{T_{1}} = 2(\gamma_{n}A_{hf})^{2}k_{B}T\sum_{q}\frac{\pi\chi(q.0)}{\Gamma_{q}} \approx 2(\gamma_{n}A)^{2}k_{B}T\frac{\pi\chi(0.0)}{\Gamma}$$
$$\xrightarrow{T>>1} \propto (\gamma_{n}A_{hf})^{2}\frac{1}{\Gamma} = (\gamma_{n}A_{hf})^{2}\tau$$

Phys. Rev. Lett. 70 (1993) 1002; 71 (1993) 1254.

• The Self-Consistent Renormalization (SCR) Theory of Spin Fluctuations

$$\operatorname{Im} \chi(q \,\omega) = \frac{\chi(0,0)}{1+q^2/\kappa^2} \cdot \frac{\omega \Gamma_q}{\omega^2 + \Gamma_q^2}$$
$$\Gamma_q = \Gamma_0 q \left(\kappa^2 + q^2\right), \quad \Gamma_0 = A/C$$
$$\kappa^2 = \frac{1}{2\overline{A}} \cdot \frac{N_0}{\chi}, \quad \overline{A} = AN_0/\rho$$

• Quantitative aspects (The spin fluctuation parameters)

: Takahashi& Moriya (1985)

$$p_s, \quad \overline{F_1}, \quad T_0 = \Gamma_0 q_B^3 / 2\pi, \quad T_A = \overline{A} q_B^2$$

($q_B = \left(\frac{6\pi^2}{v_0}\right)^{1/3}, \quad v_0 \text{ the volume per magnetic atom}$)

The SCR theory \Leftrightarrow Experiments

<The Curie temperature, T_c **>**

$$p_s^2/4 \approx \frac{15cT_0}{T_A} \eta^4 = \frac{15cT_0}{T_A} \left(\frac{T_C}{T_0}\right)^{4/3} \qquad c = \frac{1}{3^{3/2}} (2\pi)^{-1/3} \Gamma(4/3)\xi(4/3) = 0.3353\cdots$$

<Reduced Susceptibility, y>

$$y = \frac{N_0}{2T_A \eta^2} \chi^{-1} \approx \frac{\overline{F_1} p_s^2}{8T_A \eta^2} \left\{ -1 + \frac{1}{c} \int_0^{1/\eta} dz z^3 \left[\ln u - \frac{1}{2u} - \psi(u) \right] \right\}$$
$$u = z \left(y + z^2 \right) / t, \quad t = T / T_C, \quad \eta = \left(T_C / T_0 \right)^{1/3}, \quad \psi: \text{ digamma function}$$
$$\chi = \frac{N_0 p_{eff}^2}{3k_B T_C \left(t^{4/3} - 1 \right)}$$

<**NMR**, T₁>

$$\frac{1}{T_{1}} = \gamma_{N}^{2} A_{hf}^{2} T \frac{\chi}{4\pi^{2} \mu_{B} \Gamma_{0}}, \quad T_{0} = \frac{\Gamma_{0} q_{B}^{3}}{2\pi}$$

スピンゆらぎのパラメータ(SCR理論)

x	$K_0\left(\frac{\mathbf{g}\cdot\mathbf{Oe}}{\sec\cdot\mathbf{K}\cdot\mathbf{emu}}\right)$	$\beta \qquad \beta \left(\frac{1}{\sec}\right)$	\overline{K} $v_0(Å^3)$	$\Gamma_0(k_{\rm B}{\rm \AA}^3)$	$T_0(\mathbf{K})$	$\bar{A}(10^3 k_{\rm B} {\rm \AA}^2)$	$T_A(10^4 { m K})$	η	η^*
0.13	1244	0.06	36 21.14	5135	2290	5.79	1.16	0.145	0.145
0.15	891	0.05	90 20.79	4675	2119	3.17	0.634	0.231	0.230
0.17	985	0.05	30 20.37	4524	2093	3.45	0.703	0.197	0.197
x	J_1	$p_{\rm eff}^{\rm cal}(\mu_{\rm B}/{ m Co})$	$p_{\rm eff}^{\rm obs}(\mu_{\rm B}/{ m Co})$	$\theta^{\rm cal}({\rm K})$	$\theta^{\rm obs}$	(K) $p_{eff}^{'cal}$ (μ _B /Co)	$p_{\rm eff}^{\prime m obs}(\mu$	ı₀/Co)
0.13	0.0190	2.48	2.50	10	9	9 3	3.71	3.	05
0.15	0.0706	2.60	2.15	41	40	0 3	.68	3.	15
0.17	0.0646	2.33	2.13	26	25	5 3	.33	2.	84

Table III. Spin-fluctuation parameters and comparisons between observed and calculated magnetic parameters.

x	$T_M(\mathbf{K})$	χ_0 (10 ⁻³ emu/mol Oe)	χ_M (10 ⁻³ emu/mol Oe)	γ (mJ/mol K ²)	$1/(1-\alpha_0)$	$\mathcal{K}(\alpha_0)$
0.00	250	2.17	3.93	24-36	8-13	0 19-0 28
0.05	145	4.21	6.39	31	19	0.14
0.11	~10	13.9	14.0	45	44	0.04

TABLE I. The temperature T_M at which χ shows maximum, the magnetic susceptibility χ_0 and χ_M at T = 0 K and T_M , the linear electronic specific-heat coefficient γ , the Stoner enhancement factor $1/(1-\alpha_0)$, and the ratio $\mathcal{H}(\alpha_0)$ in the Y(Co_{1-x}Al_x)₂ system.

TABLE II. Hyperfine coupling constant due to the *d*-electron spins; $A_{hf}(d)$ the coefficient $\mathcal{H}_0 = (1/T_1T)_d/\chi_d$ and the Korringa relation term in $1/T_1T$; β the *d*-spin contribution to $1/T_1T$ at T = 0 K; $(1/T_1T)_d^0$ and the ratio $\mathcal{H}(\alpha)$ in the Y(Co_{1-x}Al_x)₂ system.

x	Nucleus	$A_{\rm hf}(d)$ (10 ⁵ Oe/spin)	$\frac{\mathcal{H}_0}{(\sec^{-1} \mathrm{K}^{-1} \mathrm{emu}^{-1} \mathrm{mol})}$	β (sec ⁻¹ K ⁻¹)	$(1/T_1T)_d^0$ (sec ⁻¹ K ⁻¹)	$\mathcal{H}(\alpha)$
0.00	59Co	-1.798	4300	2.5	7.5	0.29-0.31
0.05	⁵⁹ Co	-1.199	2690	2.1	10.4	0.18
0.11	⁵⁹ Co	-1.062	700.9	9.5	10.5	0.018
0.11	²⁷ A1	-0.1543	10.29	0.038	0.137	0.010

TABLE III. Estimated values of Γ_0 and T_0 together with v_0 (see text).

x	Nucleus	v_0 (Å ³)	$\Gamma_0(\text{\AA}^3k_B)$	T_0 (K)	
0.00	⁵⁹ Co	23.50	909	365	
0.05	59Co	25.00	724	273	
0.11	⁵⁹ Co	27.17	2687	932	
0.11	²⁷ Al	27.17	4423	1534	

SCR Theory

$$p_s^2/4 \approx \frac{15cT_0}{T_A}\eta^4 = \frac{15cT_0}{T_A} \left(\frac{T_C}{T_0}\right)^{4/3}$$

Takahashi Theory

$$\bar{F}_1 = \frac{4 \, k_{\rm B} T_A^2}{15 \, T_0}$$

SCR理論, Takahashi理論による定量的解析

Table IV. Parameters, T_0^* , T_A^* , p_{eff}^* and $p_{eff}^{\prime *}$ for x=0.13, 0.15 and 0.17.

x	$T_0^*(10^3 \mathrm{K})$	$T^*_A(10^4\mathrm{K})$	$p_{\rm eff}^{\rm *cal}(\mu_{\rm B}/{ m Co})$	$p_{\rm eff}^{\prime * {\rm cal}}(\mu_{\rm B}/{ m Co})$
0.13	1.92	1.23	2.77	4.20
0.15	1.41	0.726	3.24	4.78
0.17	1.27	0.846	3.16	4.70

Table V. Spin-fluctuation parameters, T_0^* , T_A^* , T_C/T_0^* and the observed values of p_{eff}^{obs} and p_{eff}^{obs}/p_s for $0.13 \le x \le 0.19$.

x	0.13	0.14	0.15	0.16	0.17	0.18	0.19
$T_0^*(10^3 \text{ K})$	1.92	1.44	1.41	1.28	1.27	0.984	1.28
$T_{A}^{*}(10^{4} \text{ K})$	1.23	0.772	0.726	0.676	0.846	1.01	1.40
$T_{\rm C}/T_0^*(10^{-3})$	3.6	10.7	18.4	17.2	13.0	9.6	5.1
$p_{\rm eff}^{\prime \rm obs}(\mu_{\rm B}/{\rm Co})$	3.05	3.10	3.15	2.98	2.84	2.67	2.38
$p_{\rm eff}^{ m 'obs}/p_{ m s}$	72.6	33.0	22.8	22.9	29.9	42.4	59.5

SCR, Takahashiによる 一般的な $p_{eff}/p_s vs T_C/T_0$ プロット

SCR
$$p_s^2/4 \approx \frac{15cT_0}{T_A} \eta^4 = \frac{15cT_0}{T_A} \left(\frac{T_C}{T_0}\right)^{4/3}$$

Takahashi

$$\bar{F}_1 = \frac{4 \, k_{\rm B} T_A^2}{15 \, T_0}$$

 $y = \frac{N_0}{2T_A \eta^2} \chi^{-1} \cong \frac{\overline{F_1} p_s^2}{8T_A \eta^2} \left\{ -1 + \frac{1}{c} \int_0^{1/\eta} dz z^3 \left[\ln u - \frac{1}{2u} - \psi(u) \right] \right\}$

Sr_{1-x}Ca_xRuO₃の磁性

$Sr_{1-x}Ca_{x}RuO_{3}$ における¹⁷O NMRナイトシフト

Sr_{1-x}Ca_xRuO₃ における ¹⁷O 核磁気緩和1/T₁

$$\left(\frac{1}{T_1}\right)_{SCR}^F \propto \frac{T}{M_0^2} \propto \frac{T}{T_c - T} \quad \left(T < T_c\right)$$

$$\left(\frac{1}{T_1}\right)_{SCR}^F \propto T\chi_0 \propto \frac{T}{T - T_c} \quad (T > T_c)$$

$$\frac{1}{T_{1}} = \gamma_{N}^{2} A_{hf}^{2} T \frac{\chi}{4\pi^{2} \mu_{B} \Gamma_{0}}, \quad T_{0} = \frac{\Gamma_{0} q_{B}^{3}}{2\pi}$$

SCR理論による定量的解析:磁化率

