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第３回 分岐現象と安定性 
 
Local bifurcations 
 
1. Saddle-node bifurcations 

In the present study, it is relying on a geometrical grasp of the phase 
portrait, rather than on complex analytic computations. 

The vector field near a saddle-node bifurcation can be expressed as 

x’ = μ – x2 

where x is a variable and μ is a control parameter.. The equilibrium equation 
(x’ = 0) gives a quadratic relationship between μ and x, and the diagram in 
the plane (x, μ) shows a parabolic equilibrium path as shown in the following 
figure.  One of the branches of this parabola is unstable, and marks the 
separation between the basin of attraction of the stable path and the basin of 
attraction of the point at infinity.. 
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x’ = μ – x2

Pierre Berge, Yves Pomeau and Christian Vidal
“Order within Chaos” Wiley 1984, p274

 
  The steady solution is defined only for μ > 0, first appearing at μ = 0.  
There exists no solution, stable or unstable, for μ < 0.   
It is useful to consider the above diagram embedded in a two-dimensional 
system. As a possible lifting of the one-dimensional equation to a 
two-dimensional space, let us consider two decoupled equations: 
 

x’ = μ – x2 

     y’ = – y 
 



Phase portraits for the saddle-node
Bifurcation

J. M. T. Thompson and H. B. Stewart
“Nonlinear Dynamics and Chaos”
Wiley, 1986, p118

x’ = μ – x2

y = - y

 

2. Transcritical bifurcatiions 
  Instead of the general saddle-node bifurcation, many physical systems 
exhibit transcritical bifurcations.  The simple form is 

f the diagram this bifurcation is called an asymmetric 
point of bifurcation. 

x’ = μ x – x2 

  As shown in the next figure, two steady solutions x = 0 and x = μ coexist. x 
= 0 is stable if μ < 0 and unstable if μ > 0, and vice versa for the x = μ solution. 
There is exchange of stability between the two solutions at the critical point.  
Owing to the form o



x’ = μx – x2

Pierre Berge, Yves Pomeau and Christian Vidal
“Order within Chaos” Wiley 1984, p274

 
  It is again possible to lift the flow, in much the same way as for the 
saddle-node bifurcation, by means of the equations 

x’ = μ x – x2 

     y’ = – y 

Phase portraits for the saddle-node
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J. M. T. Thompson and H. B. Stewart
“Nonlinear Dynamics and Chaos”
Wiley, 1986, p123

x’ = μx – x2

y = - y

 

  The phase portrait of the middle panel is the same as for the saddle-node, 
because the governing equation is the same.  This suggests that the only 
difference between the two bifurcations is the route through which the 
critical point is achieved. 



3. Pitchfork bifurcation and distorted pitchfork bifurcation 
  If the system has some intrinsic symmetry, the transcritical bifurcation is 
no longer possible, and different kind of bifurcation appears.  Indeed, the 
following system shows that the sink at the origin becomes a saddle and 
gives rise (in its supercritical form) to two symmetric sinks.  Such a system 
can be 

 The bifurcation diagram is shown as follows. 
 

described by 

x’ = μ x – x3 

 

x’ = μx – x3

Pierre Berge, Yves Pomeau and Christian Vidal
“Order within Chaos” Wiley 1984, p275

 
 
The form of the diagram justifies the classical name of pitchfork bifurcation 
r symmetric point of bifurcation. 

 It is a  have the two-dimensional system 
 x3 

     y’ = – y 

o
 

lso possible to
x’ = μ x –
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x’ = μx – x3

y = - y

 

  In the first panel, there is only a sink at the origin, and all the trajectories 
tend towards it.  When the parameter is set to be the critical value, every 
trajectory is attracted strongly to the line x axis, and the subsequent 
dynamics is essentially restricted to this one-dimensional subspace.  The 
resulting subspace is usually called the centre manifold.  When the 
parameter exceeds the critical value, the phase portrait is divided into two 
basins of attraction by the stable manifold of the saddle. 

Tamas Tel and Marton Gruiz “Chaotic Dynamics”
Cambridge University Press 2006, p69

F(x) = x – x3

V(x) = - x2 + x4

 



Tamas Tel and Marton Gruiz “Chaotic Dynamics”
Cambridge University Press 2006, p74

  
  In systems without symmetry, bifurcations occur in a different way.  In 
such cases the stable state does not cease as the parameter changes, but 
rather two new equilibrium solutions appear above a critical value: one 
stable and one unstable.  When decreasing the parameter from large values, 
one of the stable states suddenly disappears.  This phenomenon is often 
called a catastrophe. The whole bifurcation process is a distorted pitchfork 
bifurcation. 

Tamas Tel and Marton Gruiz “Chaotic Dynamics”
Cambridge University Press 2006, p348  



Tamas Tel and Marton Gruiz “Chaotic Dynamics”
Cambridge University Press 2006, p348

In asymmetrical systems of a distorted pitchfork bifurcation, 
at a critical value μc of the parameter, a second stable state arises 

abruptly, together with an unstable one (dashed line).

 
 
 

Phase portraits of general two-dimensional flows 
 
Determining fixed points and their stability, a complete phase portrait can be 
constructed.  The stable and unstable manifolds of the saddle points play an 
important role.  Both manifolds can be infinitely long curves extending over 
large domains of phase space.  The stable manifold always separates 
different attractors, and it is the basin boundary; the unstable manifold 
traces out the way towards the attractors.  In two-dimensional phase spaces 
there is no need for an extra search for limit cycle attractors, since they can 
be obtained by simply tracking the unstable manifolds. A qualitative 
knowledge of these manifolds yields an overall geometrical view of the 
dynamics, or even of its parameter-dependence, without having to solve the 
problem in detail.  This approach will also be useful in studying chaotic 
motion. (From Tamas Tel and Marton Gruiz “Chaotic Dynamics” Cambridge 
University Press 2006, p88) 
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