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Local bifurcations

1. Saddle-node bifurcations
In the present study, it is relying on a geometrical grasp of the phase
portrait, rather than on complex analytic computations.

The vector field near a saddle-node bifurcation can be expressed as
X = u— x2

where x 1s a variable and p is a control parameter.. The equilibrium equation
(x’ = 0) gives a quadratic relationship between p and x, and the diagram in
the plane (x, u) shows a parabolic equilibrium path as shown in the following
figure. One of the branches of this parabola is unstable, and marks the
separation between the basin of attraction of the stable path and the basin of
attraction of the point at infinity..
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X' =p—x2

Figure A.2 Saddle-node bifurcation
/ diagram.

The fixed point is located at the origin
(x=0, u=0). Two branches of
steady states emerge from the bifurca-
tion point: one stable (heavy solid line),
X * the other unstable (dashed line). The
~ vertical lines represent the lines of
Sao force of the vector field, the arrows
o indicating the direction.

Pierre Berge, Yves Pomeau and Christian Vidal
“Order within Chaos” Wiley 1984, p274

The steady solution is defined only for p > 0, first appearing at p = 0.
There exists no solution, stable or unstable, for u < 0.
It is useful to consider the above diagram embedded in a two-dimensional
system. As a possible lifting of the one-dimensional equation to a
two-dimensional space, let us consider two decoupled equations:

X = U — x2

y=-Y
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2. Transcritical bifurcatiions

~

Instead of the general saddle-node bifurcation, many physical systems

exhibit transcritical bifurcations. The simple form is
X = U X— X2

As shown in the next figure, two steady solutions x = 0 and x = p coexist. x
= 0 1s stable if u < 0 and unstable if u > 0, and vice versa for the x = p solution.
There is exchange of stability between the two solutions at the critical point.
Owing to the form of the diagram this bifurcation is called an asymmetric

point of bifurcation.
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Figure A.3 Diagram of a
transcritical bifurcation.
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It is again possible to lift the flow, in much the same way as for the

saddle-node bifurcation, by means of the equations

X = UX— X2
y=-y
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The phase portrait of the middle panel is the same as for the saddle-node,
because the governing equation is the same. This suggests that the only
difference between the two bifurcations is the route through which the

critical point is achieved.



3. Pitchfork bifurcation and distorted pitchfork bifurcation

If the system has some intrinsic symmetry, the transcritical bifurcation is
no longer possible, and different kind of bifurcation appears. Indeed, the
following system shows that the sink at the origin becomes a saddle and
gives rise (in its supercritical form) to two symmetric sinks. Such a system
can be described by

X =ux—x3

The bifurcation diagram is shown as follows.

X' = px — x3

Ax

/ Figure A4
Diagram of a pitchfork bifurcation.

Pierre Berge, Yves Pomeau and Christian Vidal
“Order within Chaos” Wiley 1984, p275

The form of the diagram justifies the classical name of pitchfork bifurcation

or symmetric point of bifurcation.

It 1s also possible to have the two-dimensional system
X = uxX—x3
y=-y
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In the first panel, there is only a sink at the origin, and all the trajectories
tend towards it. When the parameter is set to be the critical value, every
trajectory is attracted strongly to the line x axis, and the subsequent
dynamics is essentially restricted to this one-dimensional subspace. The

resulting subspace is usually called the_centre manifold. @When the

parameter exceeds the critical value, the phase portrait is divided into two

basins of attraction by the stable manifold of the saddle.
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Tamas Tel and Marton Gruiz “Chaotic Dynamics”
Cambridge University Press 2006, p69




Fig. 3.19. Bifurcation V(x) V(x) W(x)

diagram (schematic) of a
pitchfork bifurcation.
Co-ordinates x* of the : —

equilibrium states are given in o } ' i
terms of a parameter p. The
dashed line represents the
unstable state emerging from X

a stable state. The shapeof | —mmmm———— - ———— = =
the potential is also plotted for
selected values of the
parameter.
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In systems without symmetry, bifurcations occur in a different way. In
such cases the stable state does not cease as the parameter changes, but
rather two new equilibrium solutions appear above a critical value: one
stable and one unstable. When decreasing the parameter from large values,
one of the stable states suddenly disappears. This phenomenon is often
called a catastrophe. The whole bifurcation process is a distorted pitchfork

bifurcation.

Q=0

Tamas Tel and Marton Gruiz “Chaotic Dynamics”
Cambridge University Press 2006, p348
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In asymmetrical systems of a distorted pitchfork bifurcation,
at a critical value pc of the parameter, a second stable state arises
abruptly, together with an unstable one (dashed line).

Tamas Tel and Marton Gruiz “Chaotic Dynamics”
Cambridge University Press 2006, p348

Phase portraits of general two-dimensional flows

Determining fixed points and their stability, a complete phase portrait can be
constructed. The stable and unstable manifolds of the saddle points play an
important role. Both manifolds can be infinitely long curves extending over
large domains of phase space. The stable manifold always separates
different attractors, and it is the basin boundary; the unstable manifold
traces out the way towards the attractors. In two-dimensional phase spaces
there is no need for an extra search for limit cycle attractors, since they can
be obtained by simply tracking the unstable manifolds. A qualitative
knowledge of these manifolds yields an overall geometrical view of the
dynamics, or even of its parameter-dependence, without having to solve the
problem in detail. This approach will also be useful in studying chaotic
motion. (From Tamas Tel and Marton Gruiz “Chaotic Dynamics” Cambridge
University Press 2006, p88)
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