超伝導(BCS理論)の概念

2電子 | k ↑, -k ↓ 〉間 の引力

2電子間に働く引力の概念図

超伝導対の波動関数

P.W. Anderson and P. Morel, *PR* 123 1911('61) "Generalized BCS State..."

$$\Psi(\mathbf{r}_{1},\sigma_{1};\mathbf{r}_{2},\sigma_{2}) = \chi(\sigma_{1},\sigma_{2}) \cdot \psi(\mathbf{r}_{1},\mathbf{r}_{2})$$
Spin part Orbital part
Spin part: $S = 0$ スピン一重項 $\chi^{s-0} = \frac{1}{\sqrt{2}}(\uparrow\downarrow\downarrow) - \downarrow\uparrow\uparrow\rangle)$
 $S = 1$ 三重項 $\chi^{s-1} = |\uparrow\uparrow\rangle, (1/\sqrt{2})(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle), |\downarrow\downarrow\rangle$
Orbital part: $\psi(r_{1},r_{2})$ $r = r_{1} - r_{2}$ $\psi(r)$
 $\left(-\frac{\hbar^{2}}{m}\nabla^{2} + V(\mathbf{r})\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$
V(r) が異方的な場合、超伝導対の波動関数も異方的になる
 $\psi(r) \propto Y_{l}^{m}(\theta,\varphi)$ $l=0, l=1, l=2, l=3, \dots, p$
 p -波, d -波, f -波

$$\Delta_{l} = \Delta_{0} \sum_{m=-l}^{l} \lambda_{lm} Y_{l}^{m}(\theta, \varphi)$$

異方的な超伝導ギャップ

電子軌道

波動関数の角度依存

(c) / = 2 (*d* 波)

 $\Delta(\theta) = \Delta_0 \sin(2\theta)$

Тор-

View

****+

超伝導状態状態の状態密度

異方的超伝導ギャップの特徴

超伝導ギャップ内に連続的に状態を 持つ N(E) ∝ E

➡ 超伝導状態の物理量が温度のべ キ乗となる。

強相関電子系超伝導の相図

Figure 14. Phase diagrams of high- T_c cuprates, (a) $La_{2-x}Sr_xCuO_4$ and (b) $YBa_2Cu_3O_{6+x}$, (c) a heavy electron superconductor $CePd_2Si_2$ under pressure p and (d) an organic superconductor κ -(ET)₂Cu[N(CN)₂]Cl under pressure. T_N : Néel temperature, AFI: antiferromagnetic insulator, SC: superconductor, PM: paramagnetic metal.

Na_x(H₃O)_zCoO₂ yH₂Oの超伝導

"磁気的Frustration"

Pyrochlore Oxide $(A_2B_2O_7)$, Spinel Oxide (AB_2O_4) , C15 Laves Phase (AB_2)

Geometrical Frustration Spin Frustration Charge Frustration

Magnetite Fe_3O_4 (Fe²⁺ and Fe³⁺) Spinel Oxide AlV₂O₄ (V^{2.5- δ} and V^{2.5+3 δ})

High Degeneracy

Lattice Distortion, Spin-Ice, Spin-Singlet, Heavy Fermion P. Laccore (1987) AF Triangular platelet < AF Pyrochlore

1'

"低次元性(Low Dimensionality)"

Introduction Takada, Sakurai et al. Nature 422 (2003) 53

Cobaltate Superconductor

Cuprate Superconductor

Superconductivity in the strongly correlated electron system

$$d\varepsilon (t_{2g})$$

Co⁴⁺: 3d⁵ Co³⁺: 3d⁶

$T_c vs. v_{O3}$ Phase Diagram of $Na_x CoO_2 yH_2O$

Reentrant Behavior of Superconductivity

⁵⁹Co NQR Spectra at 77K

M. Mochizuki & M. Ogata: JPSJ 76 (2007) 013704.

Nuclear Spin-Lattice Relaxation Rate $1/T_1$: SC state

K. Ishida et al. J. Phys. Soc. Jpn 72 3041 (2003)

the same conclusion by Fujimoto et al. PRL 97 047004 (2004)

Nuclear Spin-Lattice Relaxation Rate $1/T_1$: SC state

K. Ishida, Y. Ihara, K. Yoshimrua *et al.* JPSJ 72 3041 (2003) Fujimoto *et al.* PRL 97 047004 (2004)

 $Na_xCoO_2 \cdot yH_2O$ is classified to be an unconventional superconductor.

Heavy-Fermion Superconductors

Ruthenate Sr₂RuO₄

Magnetic Excitations in BLH, MLH and Unhydrated

Magnetic fluctuation in BLH

Superconductivity in the vicinit of QCP of A-type fluctuation ?

The T^n relation seen in ${}^{23}1/T_1$ of Na_{0.7}CoO₂ below 40K is due to FM spin fluctuations. (\rightarrow Co^{3.3+})

Similar relation seen in ${}^{23}1/T_1$ of Na_{0.35}CoO₂·1.7H₂O indicates the existence of FM spin fluctuations in the SC Na_xCoO₂·yH₂O. (\rightarrow Co^{3.65+}? \rightarrow Co^{3.4+} in the presence of H₃O⁺)

Neutron Scattering: Boothroyd et al., PRL 92 (2004) 197201.

Conclusion $(Na_xCoO_2 \cdot yH_2O)$

- 1. Universal Phase Diagram: T_c vs. v_Q of ⁵⁹Co NQR
 - → Superconducting Phases appear in both sides of Magnetic Phase !
 - → **Strong Relation** between Superconducting and Magnetic Phases
- 2. Magnetic Correlation: Na_xCoO₂·yH₂O is Unconventional Superconductor ← 1/T₁ of ⁵⁹Co NQR Superconductivity appears in the vicinity of Unconventional Quantum Critical Point !
- 3. Only SC BLH has spin fluctuations at q~0! ← ⁵⁹Co NQR The *A-type* spin fluctuation is important ! ← ²³Na NMR

