

Departments of Mathematics & Neurobiology, Physiology and Behavior University of California at Davis

Reverse engineering of molecular machines: mitotic spindle

Alex Mogilner

Kyoto, October 2007

People who did it:

Roy Wollman

Josh Jones and Tobias Meyer (Stanford) Jon Scholey and Gul Civelekoglu (Davis)

Collaborators:

Eric Cytrynbaum (currently at UBC)

Supported by NSF, NIH

Relevant papers and about our lab at:

www.math.ucdavis.edu/~mogilner

©1998 GARLAND PUBLISHING

Dynamic instability

Mitosis (segregation of chromosomes before cell division) in Drosophila Embryo

(b)

Search and Capture

Holy & Leibler, 1994:

p – probability of a successful search t_s – average time of a successful search t_u – average time of an unsuccessful search τ - average search time q – prob. to grow in the right direction, ~ 1/3 r^* – probability to grow to length d

 p^* - probability to grow to length d

$$\tau = pt_{s} + (1 - p)p(t_{s} + t_{u}) +$$

$$(1 - p)^{2} p(t_{s} + 2t_{u}) + \dots = t_{s} + \frac{1 - p}{p}t_{u}$$

$$p << 1, \quad \tau \approx \frac{t_{u}}{p}, \quad p = qp^{*}, \quad p^{*} \sim e^{-d/t}$$

$$V = 1 = \frac{1e^{d/t}}{p}$$

$$l = \frac{V_g}{f_{cat}}, \quad t_u \approx \frac{l}{V_g}, \quad \tau \approx \frac{le}{qV_g},$$

$$\min(\tau) = \frac{de}{qV_g} \sim 10 \min \text{ at } l = d$$

For Newt lung cell, distance between spindle pole and chromosome, $d \sim 10 \,\mu\text{m}$. Rescue frequency is very small, and average microtubule length, $l \sim 10 \,\mu\text{m}$. Growth rate, $V_g \sim 10 \,\mu\text{m/min}$. Time in prometaphase, $\tau \sim 10 \,\text{min}$.

Optimal unbiased 'Search and Capture' is not fast enough:

Multiple chromosomes - greater time to capture:

- Capture of the last chromosome corresponds to the longest search; time ~ logarithm of the number of chromosomes.
- 2) Geometric effect: a few-fold increase.

Experiment with Hela cells:

prophase - prometaphase - metaphase

Numerical experiment:

Optimal biased 'Search and Capture' is fast enough:

The model inspired two recent studies:

Ran

Caudron et al, 2005: Ran gradients exist and bias microtubule asters

Lenart et al, 2005: at large centrosome-chromosome distances, "Search&Capture" is not efficient, and actin-myosin "fishnet" mechanism works first

Approximate/relative distance from chromosomes to the spindle site

Fibroblast	5–10 µm	
Mammalian oocyte	30–40 μm	-
Echinoderm oocyte	60–90 μm	
Amphibian oocyte	400–800 μm	

Multiple parts of the spindle are involved in stochastic, yet robust and predictable 'dance'

D. Anaphase

E. Telophase

A. Prophase

B. Prometaphase

Balance of dynein (outward) and ncd (inward) forces explains pole separation and transient steady state in interphase - prophase

Cytrynbaum et al., 2003, 2005

Quantitative measure of mitotic progression

Mechanics

Forces on the spindle and dynamic equations

Numerical solution of the model equations (stiff ODE solver)

Impossibility of systematic scanning of the parameter space (~ 50 parameters) So: genetic algorithm based optimization

Examples of good models

$$\frac{dS}{dt} = \frac{2\left(F_{ip} + F_{chrk} + F_{aster} + F_{kt}\right)}{\mu_{pole}}$$

We have 10,000+ more examples...

Bewildering variety of the 'perfect' models: switches

Bewildering variety of the 'perfect' models: forces

Final Model

Model prediction: estimates of the mechanical parameters

Kinetic / mechanic properties of participating motors

In agreement with in vitro biochemical study:

Design principle: Balance of large forces

$$\mu_{pole} \frac{dS}{dt} = 2 \sum_{Pole} F$$
$$\mu_{chr} \frac{dD}{dt} = 2 \sum_{Chr} F$$

Typical drag ~ 100 [pN sec/µm] $\frac{dS}{dt} \sim 0.03 [\mu m / \sec] \Rightarrow \sum_{Pole} F \sim 1 - 10 [pN]$

General paradigm for system level analysis of mechanical (and other) systems

General paradigm for system level analysis of mechanical (and other) systems

Biological problem

Global quantitative measurements

Detailed mechanistic description of **multiple possibilities**

Back to the biology

Clustering / Unsupervised learning

Repeated Stochastic optimization

Mathematical description

Future challenge: add biochemical regulation

General principles of complex systems' design:

Robustness, Redundancy

Open system, consuming lots of energy

Multi-objective optimization: speed and accuracy

Inter-connectedness, impermanence

