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Microtubules and transport by molecular motors



Dynamic instabilityDynamic instability



Tram  et al., Encyclopedia of Life Sciences,2002

Mitosis (segregation of chromosomes before cell division) in Drosophila Embryo



Search

Capture

Search and Capture
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Holy & Leibler, 1994:

p – probability of a successful search

   – average time of a successful search

   – average time of an unsuccessful search

!  - average search time

q – prob. to grow in the right direction, ~ 1/3

p* - probability to grow to length d
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For Newt lung cell, distance between 
spindle pole and chromosome, d ~ 10 µm. 

Rescue frequency is very small, and 
average microtubule length, l ~ 10 µm. 

Growth rate,    ~ 10 µm/min. Time

in prometaphase, ! ~ 10 min.
g
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Multiple chromosomes - greater time to capture:

1) Capture of the last chromosome corresponds

     to the longest search; time ~ logarithm of the

     number of chromosomes.

2) Geometric effect: a few-fold increase.
prophase – prometaphase – metaphase

Experiment with Hela cells:

Numerical experiment:

Optimal unbiased ‘Search and Capture’ is not fast enough:



‘Search and Capture’ 

can be biased



prophase – prometaphase – metaphase

Experiment with Hela cells:

Numerical experiment:

Optimal biased ‘Search and Capture’ is fast enough:



The model inspired two recent studies:

Caudron et al, 2005:

Ran gradients exist and

bias microtubule asters

Lenart et al, 2005:

at large centrosome-chromosome

distances, “Search&Capture” is

not efficient, and actin-myosin

“fishnet” mechanism works first



Multiple parts of the spindle are involved in 

stochastic, yet robust and predictable ‘dance’

Force-balance model;
Motors switch on and off
at times that are tightly
regulated



Balance of dynein (outward) and ncd (inward) forces explains pole separation and Balance of dynein (outward) and ncd (inward) forces explains pole separation and 

transient steady state in interphase - prophasetransient steady state in interphase - prophase
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Cytrynbaum et al., 2003, 2005



After prophase

the dance is

very complex

Astral Microtubules

Chromosomal 

Microtubules

Kinetochore 

Microtubules

Inter-polar Microtubules



Pole Pole –– Pole distance  Pole distance ss over time over time
S

Quantitative measure of mitotic progression

S



Phenotype

Mechanics

Biochemical

regulation

Switches



Motor activation profiles

Defining the puzzle: Find activation sequence and 
mechanical characteristics of motors that explains the data
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Building the model (example of chrMTs)
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3. Forces on microtubule population
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Regulatory switch Single Microtubule
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4 types of microtubule populations



Forces on the spindle and dynamic equations
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Solve for single

microtubule (v  f)

Integrate for

microtubule

population (f   F)

Integrate for entire

spindle (F   v)

Numerical solution of the model equations (stiff ODE solver)

Score



Impossibility of systematic scanning of the parameter space

(~ 50 parameters)

So: genetic algorithm based optimization

1. Start with random

population of solutions

2. Evaluate goodness of

solutions.

Subpopulation I Subpopulation II
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4. Mutation

5. Recombination

x 200

score 
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Examples of good models
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We have 10,000+ more examples…



Bewildering variety of the ‘perfect’ models: switches
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Bewildering variety of the ‘perfect’ models: forces





Outwards: Inwards:
Kinesin-13

Dynein, Chr-Arms

Kinesin-5
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Dynein, Chr-Arms

Kinesin-5

Chr-Arms



Outwards: Inwards:
Kinesin-13

Kinesin-5

Chr-Arms
Kinesin-13, KT-dep



Kinesin-13, KT-dep
Outwards: Inwards:

Kinesin-5

Chr-Arms

Kinesin-14



Kinesin-13, KT-dep
Outwards: Inwards:

Kinesin-5

Chr-Arms

Kinesin-14



Kinesin-13, KT-dep
Outwards: Inwards:

Kinesin-5

Chr-Arms

Kinesin-14
KT-dep



Outwards: Inwards:

Kinesin-5

Chr-Arms

Kinesin-14
KT-dep



Final Model



Model prediction:

estimates of the mechanical parameters

Kinetic / mechanic properties of participating motors
In agreement with 

in vitro biochemical study:
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Perturbation / Noise
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Design principle: Balance of large forces
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Global quantitative
 measurements

Detailed mechanistic
description of multiple

possibilities

Mathematical
description

Repeated Stochastic
optimization

Clustering /
Unsupervised learning

Back to the
biology

Biological 
problem

General paradigm for system level analysis of mechanical (and other) systems
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optimization

Clustering /
Unsupervised learning

Back to the
biology

Biological 
problem

General paradigm for system level analysis of mechanical (and other) systems



Future challenge: add biochemical regulationFuture challenge: add biochemical regulation



General principles of complex systems’ design:

Robustness, Redundancy

Open system, consuming lots of energy

Multi-objective optimization: speed and accuracy

Inter-connectedness, impermanence


