第3回 COE一市民講座

### スピンの目で見る超低温のミクロの世界

MRI顕微鏡の開発とスピンの目で見る磁気的構造 古典的世界(室温)から量子的世界(超低温)へ

> 京都大学 大学院理学研究科 低温物質科学研究センター 水崎 隆雄

### 目次

### §1 古典力学と量子力学

§2 量子液体ヘリウムと超流動 (絶対零度でも凍らないヘリウム)

§3 絶対零度を目指して

§4 磁気共鳴とMRI顕微鏡について

§5 超低温で見える量子の世界

## §1 古典力学から量子力学へ

量子力学 1920年代 シュレディンガー、ハイゼンベルグ

### 粒子の波動性



粒子性:

電子(質量=9.1093897 x 10-31 kg,

電荷=1.60217733 x 10<sup>-19</sup> C)

電子を1個、1個、独立に 入射してみましょう。

(日立/外村)

電子ビームの干渉パターン



## ド・ブロイの物質波 (電子の波長は)



h D

# h:プランク定数 = $6.6 \times 10^{-34} J \cdot \text{sec}$

(量子力学の世界の定数)

$$P:$$
運動量( $\sqrt{2meV}$ )

 $P^{2}/2m = eV$ , V:加速電圧

(ド・ブロイ/1929 年 ノーベル賞 / 電子の波動性の発見)

不確定原理(ハイゼンベルグ) 

$$\leftarrow \Delta X \rightarrow$$
 量子力学(波動性)  
 $\psi(X) \propto \cos\left(\frac{2\pi X}{\Delta X}\right)$   
 $\Delta P = \frac{h}{\lambda}\Big|_{\lambda = \Delta X} = \frac{h}{\Delta X}$ (ド・ブロイ波長の式より)

 $\Delta P \cdot \Delta X = h$  (ハイゼンベルグの不確定原理)

### • 量子化 (とり得る状態がとびとびになる)



輪の上を伝わる波 (波長は輪の長さの整数分の1 でなければならない)  $\lambda_n = \frac{L}{n} , \qquad (P = \frac{h}{\lambda}) \quad (F\cdot \neg \neg \neg \neg \chi E)$  $P_n = \frac{n \cdot h}{L} , \qquad n = 0, \pm 1, \pm 2 \cdots$ 



箱の中の粒子

 $E_{n} = \frac{1}{2}mv^{2} = \frac{P^{2}}{2m} , \quad (P = mv)$ (周期条件)  $h^{2}$ 

$$=\frac{h^2}{2mL^2}(n)^2$$

同じ種類の(区別出来ない)粒子が多数個の系 2個の粒子の場合を考える

$$\psi(X_1, X_2) = P \cdot \psi(X_2, X_1)$$
$$= P \cdot P \psi(X_1, X_2)$$
$$= P^2 \psi(X_1, X_2)$$
$$P^2 = 1, \quad P = \pm 1$$

フェルミ粒子  $\psi(X_1, X_2) = -\psi(X_2, X_1)$   $\psi(X_1, X_2) = \psi(X_2, X_1)$  $\psi(X_1, X_2) = \psi(X_2, X_1)$ 

(この世の中には2種類しかない)

### 同じ種類の2個の粒子の衝突



フェルミ粒子の場合  $\psi_F(1,2) = -\psi_F(2,1)$  $= \frac{1}{\sqrt{2}} \{ \psi_a(1)\psi_b(2) - \psi_a(2)\psi_b(1) \}$  ボーズ粒子の場合  $\psi_B(1,2) = \psi_B(2,1)$  $= \frac{1}{\sqrt{2}} \{ \psi_a(1)\psi_b(2) + \psi_a(2)\psi_b(1) \}$ 

### 今、同じ状態(a = b)に粒子 1 と粒子 2 が 同時に存在 するとすると、



まとめ 粒子は波である(量子力学)

1)不確定性原理-位置と運動量を同時に指定出来ない

2) エネルギー(運動量) はとびとびの値しか取れない

3) 量子統計 ボース粒子 → 同じエネルギーの状態に何個でも入れる フェルミ粒子 → 同じエネルギーの状態には 1個しか入れない



「箱の中には N 個の同じ粒子がある」

- 箱の中に一様に分布(粒子の波動性)
- エネルギー(運動量)がとびとびの値
- 量子統計 <u>ボ</u>-

ボース粒子のBose-Einstein凝縮(BEC)



### He は T = 0 Kでも液体である(固体にならない)



#### **2-2. He はなぜ絶対零度**(*T*=0K)で液体なのか?

原子(分子)の間に働く力(相互作用)



全ての物質は低温で固体になる (Heは例外)

(古典力学) 🛑 (粒子は衝突しない)



 ${\cal E}$ 

| $\frac{\varepsilon}{2} \sim 1 \leftarrow Herrouse$ |                                         |  |  |  |
|----------------------------------------------------|-----------------------------------------|--|--|--|
| E <sub>0</sub> (量子力学の効果)                           | $E_0$ ゼロ点エネルギー)ー 量子力学                   |  |  |  |
|                                                    | $H$ の場合は $\int \mathcal{E}  $ が小さい(希ガス) |  |  |  |
| $\frac{\varepsilon}{E_0} >> 1 \leftarrow 普通の固体$    | ${n}$ が小さい                              |  |  |  |
|                                                    | ● 量子液体(ゼロ点エネルギーで融けている)                  |  |  |  |



Heは(固化しない) 絶対零度でも液体 <=> 量子効果で融解

4He はT = 0 K まで液体である

### **2-3**. 低温の液体一超流動<sup>4</sup>He

#### T=0K で液体

### 量子統計の脅威

超流動<sup>4</sup>Heの実験

Bose-Einstein凝縮(BEC)

1) T < 2.17 K で粘性がなくなる





非常に細い配管

$$\Delta P = P_1 - P_2 = 0$$
  
(圧力差なしに流れる)



- T> 2.17 K まったく流れない
- T < 2.17 K</li>一気に流れ出る

### 2) フィルム流の観測



#### 薄い膜を通じて He がビーカーの外に流れ出てしまう。(粘性がない)





温度差をつけると超流動が温度の高い方に 流れ込み、勢いあまって上から噴出す

### 2-4. 超流動はなぜ起こる?

 $N(\sim 10^{23})$  個の  ${}^{4}$  Het ース粒子)



#### **超流動とマクロ(巨視的)スケールでの量子化** 超流動(T=0で考える)

ボース凝縮が完全に起こっている N<sub>0</sub> = N 全部の粒子がエネルギーの最も 低い状態に落ち込んでいる



超流動を図のように流す (回転させる)

巨視的なスケールでの波動関数  
$$\varphi = A e^{i\vec{P}\cdot\vec{r}/\hbar}$$



<mark>巨大な原子のような状態</mark> (原子核のまわりを回る電子のようなもの)

$$P = \frac{h}{L} \cdot n = mv_S \quad , \qquad (\lambda = L/n, \qquad L = 2\pi r)$$

運動量の量子化

$$v_{S} = \left(\frac{h}{m}\right) \cdot \frac{1}{2\pi r} \cdot n \quad (n = 0 \cdot 1 \cdot 2 \cdot 3 \cdots)$$

vs (r) vs (r) n=3 n=1 n=0r r· 巨視的な系でもこのような流れ方しかできない (量子化) n'=n-1にはなかなか行けない · ひとたび流れ出すと全部の粒子が揃って流れる (超流動)



Yarmuchuk et al. PRL(1978)

### 2-6. <sup>4</sup>He 以外の超流動

(液体ヘリウムは特殊な例ではありません)

金属中の電子(フェルミ粒子の気体) 電子対(クーパー対) (ボース粒子) — 超伝導 BCS理論(1972年 ノーベル賞) 高温超伝導体(1987年 ノーベル賞) 液体 <sup>3</sup>Hマェルミ液体)  $^{3}He$  がクーパー対を作る (電子対と同じ)  $\bigcup \quad T_C \cong 1mK$ 超流動<sup>3</sup>He(1996年 ノーベル賞) 理論(2003年 ノーベル賞) アルカリ原子の気体をレーザー冷却(1997年ノーベル賞) BEC(2001年ノーベル賞) フェルミ原子が対を作って超流動(2004年) 中性子星

中性子(フェルミ粒子)が対を作る 💴 超流動星



(注) 真空中では電子間にはクーロンカ(反発力)が働く





京都大学 高橋グループ <sup>87</sup>RbのBEC (密度 対 運度量)



MIT-Ketterleグループ

種々の量子凝縮系を回転させた時
 に出来るの量子渦
 上から<sup>21</sup>Na(ボース粒子)、

<sup>6</sup>Li-<sup>6</sup>Li分子、<sup>6</sup>Li-クーパー対

### §3 絶対零度を目指して ヘリウムの液化 カマリン・オンネス (オランダ) 1908 年 $^{4}He$ (4.2 K) 「水銀の抵抗の温度変化」 ポンプで引いて ~ 1 K 達成 「 T=0 でも He は液体」 抵 抗 温度 4 K <sup>4</sup>Heの液化 超伝導の発見 1913 年 ノーベル賞 – 低温物理の幕開け 図24 ヘリウム液化機の前のファン・デル・ワール $(4.2 \text{ K} \sim 1 \text{K})$ ス(右)とカマリン・オンネス(左) (1911年) 1910年 ノーベル賞 ファン・デル・ワールス 引用 http://th.physik.uni-frankfurt.de/~jr/gif/phys/waalsonnes.jpg

### 日本最大のヘリウム液化機(吉田キャンパス)

#### (液化量 270 リットル/時)



京大のヘリウム液化機 吉田、宇治、桂キャンパス(H17年度建設中)





#### 人類はどこまで絶対零度に近づいたか

### §4. 極低温下の磁気共鳴映像法(MRI) 顕微鏡の開発



#### The Nobel Prize in Physiology or Medicine 2003

"for their discoveries concerning magnetic resonance imaging"



Paul C. Lauterbur



#### MRIの発見 / 2003年 ノーベル医学・生理学賞



出所 http://www.nobelprize.org/nobel\_prizes/medicine/laureates/2003/illpres/index.html

- 出所 http://www.nobelprize.org/nobel\_prizes/medicine/ laureates/2003/lauterbur-bio.html
- 出所 http://www.nobelprize.org/nobel\_prizes/medicine/ laureates/2003/mansfield-bio.html

NMRとMRIの原理

### 核磁気共鳴 (NMR)

#### 原子核スピン

核磁気モーメント

$$\vec{\mu} = \hbar \gamma \vec{I}$$

$$\frac{dM}{dt} = \gamma \left( \vec{M} \times \vec{H}_0 \right)$$



磁化

 $M \propto \mu$ 

 $\omega_L = \gamma H_0$ 

核磁気共鳴周波数

γ:磁気回転比(核種によって決まる) γ(H) =42.6 MHz/T γ(<sup>3</sup>He) =32.4 MHz/T



### 磁気共鳴映像法 (Magnetic Resonance Imaging)の原理





## 2次元MRIの方法(画像の作り方)



### 京都大学 超低温MRI顕微鏡









### §5 超低温で見える量子の世界





相分離界面の画像化

接触角度の温度依存性



### 5-2. 縦磁化の回復の様子 (T<sub>1</sub> 加重 MRI)





### 核スピン I = 1/2 (r, I)

液体<sup>3</sup>He を加圧すると固体になる:それでも波が重なる





(a)の方がエネルギー低い
 ↓ 量子力学的力
 スピンは(‡ ‡)

### 核整列固体<sup>3</sup>Heの磁区の構造

*超低温 T* < 1 mK



### 3個の磁区から出来ている単結晶固体<sup>3</sup>HeのMRI写真







### ISSP回転超低温冷凍機(世界最速回転)





### 核断熱消磁ステージ 銅の有効モル数=23mol

最低温度 : 300µK under 1 rot/sec

High Speed Rotation (1 rot/sec) + MRIの画像技術

(1) 量子渦の格子(異方的超流動 <sup>3</sup>He)

 $y/x = \sqrt{\rho_{s//}/\rho_{s\perp}} = \sqrt{2}$ 

40 % deformation





(2) 量子渦の構造

(3) 量子渦の運動



#### 古典力学(マクロの法則)と量子力学(ミクロの法則)

 $\Delta P \cdot \Delta X = h$ (ハイゼンベルグの不確定原理) h:プランク定数 =  $6.6 \times 10^{-34} J \cdot \text{sec}$ 

**古典力学** (*X*, *P*)=(*X*, *mv*) を同時に指定

量子力学 不確定性でどこまで  $(X, v \Sigma 同時に指定してよいか?$ 例1 M = 1 Kg (石ころ)、 $\Delta X = 1 \mu m$  $\Delta P = 10^{-27} Kg m/sec$   $\longrightarrow \Delta v = 10^{-27} m/sec$ 例2  $M = 10^{-30} Kg$  (電子)  $\begin{cases} \Delta X = 1 \mu m$ 、  $\Delta P = 10^{-27} Kg m/sec$   $\implies \Delta v = 10^3 m/sec$  $\Delta X = 1 nm$ 、  $\Delta P = 10^{-24} Kg m/sec$   $\implies \Delta v = 10^6 m/sec$ (原子の大きさ)

#### 量子力学は原子等のミクロな世界の法則





| 1001 | WORK VIDORE                                               |
|------|-----------------------------------------------------------|
| 1901 | W.C. Köntgen X線の発見                                        |
| 1902 | H. A. Lorentz, P. Zeeman 放<br>射に対する磁場の影響の研究               |
| 1903 | H. A. Becquerel 放射能の発見<br>P. Curie, M. Curie 放射能の<br>研究   |
| 1904 | Lord Rayleigh 気体の密度に<br>関する研究とアルゴンの発見                     |
| 1905 | P.E.A. Lenard 陰極線の研究                                      |
| 1906 | J.J. Thomson 気体の電気伝導<br>に関する理論的および実験的<br>研究               |
| 1907 | A. A. Michelson 干渉計の考案<br>とそれによる分光学およびメ<br>ートル原程に関する研究    |
| 1908 | G. Lippmann 光の干渉を利用<br>した天然色写真の研究                         |
| 1909 | G. Marconi, K. F. Braun 無線<br>電信の開発に対する貢献                 |
| 1910 | J.D. van der Waals 気体およ<br>び液体の状態方程式に関する<br>研究            |
| 1911 | W.Wien 熱放射に関する法則<br>の発見                                   |
| 1912 | N.G.Dalén 灯台用ガスアキュ<br>ムレーターの自動調節機の発<br>明                  |
| 1913 | H. Kamerlingh Onnes 液体へ<br>リウムの製造に関連する低温<br>現象の研究         |
| 1914 | M. Yon Laue 結晶によるX線<br>同応現象の双目                            |
| 1915 | 回初況家の光光<br>W.H.Bragg, W.L.Bragg X<br>線による結晶構造解析に関す<br>る研究 |
| 1916 | なし                                                        |
| 917  | C.G.Barkla 元素の特性X線<br>の発見                                 |
| 1918 | M. Planck 量子論による物理<br>学進歩への貢献                             |
| 919  | J Stark 陽極線のドップラー<br>効果およびシュタルク効果の<br>発目                  |
| 1920 | C.E.Guillaume アンバーの発<br>見とそれによる精密測定の開<br>琴                |

| 年    | 物理学賞                                                                                                                   | t               |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| 1955 | P. Kusch 電子の磁気モーメン<br>トに関する研究<br>W. E. Lamb 水素スペクトルの                                                                   |                 |  |  |  |  |
| 1956 | <ul> <li>(試型構造に関する発見</li> <li>W. Shockley, J. Bardeen, W.</li> <li>H. Brattain 半導体の研究<br/>とトランジスター効果の発見</li> </ul>     |                 |  |  |  |  |
| 1957 | TD. Lee, CN. Yang パリテ<br>ィの非保存についての研究                                                                                  |                 |  |  |  |  |
| 1958 | P. A. Cherenkov, I. E. Tamm,<br>I. M. Frank チェレンコフ効<br>果の発見とその解釈                                                       |                 |  |  |  |  |
| 1959 | E. Segré, O. Chamberlain 反<br>陽子の発見                                                                                    |                 |  |  |  |  |
| 1960 | D. A. Glaser 泡箱の発明                                                                                                     |                 |  |  |  |  |
| 1961 | <ul> <li>R. Hofstadter 線形加速<br/>よる高エネルギー電子散<br/>研究と核子の構造に関す<br/>見</li> </ul>                                           | 器に乱の発           |  |  |  |  |
|      | R. Mössbauer r線の共鳴<br>に関する研究とメスパウ<br>効果の発見                                                                             | <b>吸収</b><br>アー |  |  |  |  |
| 1962 | L.D.Landau 凝集状態の<br>とくに液体ヘリウムの理<br>研究                                                                                  | 物質論的            |  |  |  |  |
| 1963 | E. P. Wigner 原子核と素<br>の理論における対称性の<br>と応用                                                                               | 粒子<br>発見        |  |  |  |  |
| 964  | M. G. Mayer, J. H. D. Jensen<br>原子核の熱情造に関する研究<br>C. H. Townes, N. G. Basov, A.<br>M. Prokhorov メーザー,レ<br>ーザーの発明および量子エレ |                 |  |  |  |  |
| 965  | クトロニクスの基礎的研究<br>朝永振一郎, J. Schwinger, R.<br>P. Feynman 量子電磁力学<br>の分野における基礎的研究                                           |                 |  |  |  |  |
| 966  | <ul> <li>A. Kastler) 原子内のヘルツ波<br/>共鳴の光学的方法(光ポンビング法)の発見と開発</li> </ul>                                                   |                 |  |  |  |  |
| 967  | H. A. Bethe 核反応運論に対す<br>る貢献。とくに星におけるエ<br>ネルギー発生に関する発見                                                                  |                 |  |  |  |  |
| 968  | L. W. Alvarez 水素泡箱)<br>る素粒子の共鳴状態に関<br>研究                                                                               | C よ<br>する       |  |  |  |  |
| 969  | M. Gell-Mann 素粒子の分<br>相互作用に関する発見との                                                                                     | 題と<br>形完        |  |  |  |  |

| 年    | 物理学賞                                                                                                                 | 年            |
|------|----------------------------------------------------------------------------------------------------------------------|--------------|
| 1970 | H. Alfvén 電磁流体力学での<br>基礎的研究<br>L. Néel 反強磁性と強磁性に関                                                                    | 1983         |
| 1971 | する基礎的研究<br>D. Gabor ホログラフィーの発<br>明とその後の発展に対する寄                                                                       | 1984         |
| 1972 | J. Bardeen, L. N. Cooper, J.<br>R. Schrieffer 超伝導現象の<br>理論的解明(BCS 理論)                                                | 1985         |
|      |                                                                                                                      | 1986         |
| 1973 | <ul> <li>江崎玲於奈 I. Giaever 半導体<br/>におけるトンネル効果と超伝<br/>導体の実験的発見</li> <li>B. Josephson ジョゼフソン効<br/>里の可要的A.201</li> </ul> | 1987         |
| 1974 | M. Ryle, A. Hewish 電波天文<br>学における先駆的研究                                                                                | 1988         |
| 1975 | J. Rainwater, A. Bohr, B. R.<br>Mottelson 原子核構造に関<br>する研究                                                            | 1989         |
| 1976 | S.C.C.Ting, B.Richter 重い<br>素粒子(J/ ψ粒子)の発見                                                                           | 1990         |
| 1977 | P. W. Anderson, J. H. van<br>Vleck, N. F. Mott                                                                       | 1992<br>1991 |
| 1978 | P. L. Kapitsa 低温物理学にお<br>ける基礎的研究<br>A. A. Penzias, R. W. Wilson<br>宇宙マイクロ波背景放射の発<br>目                                | 1993         |
| 1979 | S. L. Glashow, S. Weinberg,<br>A. Salam 中性カレントの子<br>言,電磁相互作用と弱い相互                                                    | 1994         |
| 1980 | 作用の統一理論への寄与<br>J. W. Cronin, V. L. Fitch 中<br>性K中間子崩壊における基本<br>対称性の破れの発見                                             | 1995         |
| 1981 | N. Bloembergen, A. L.<br>Schawlow レーザー分光学<br>への客与                                                                    | 1997         |
| 1982 | K. Siegbahn 高分解能光電子<br>分光法の開発<br>K.G. Wilson 物質の相転移に<br>関連した臨界現象に関する理                                                |              |

|      | 物理学賞                                                             |
|------|------------------------------------------------------------------|
| 1983 | S. Chandrasekhar, W. A.<br>Fowler 星の進化 構造を知                      |
|      | るうえで重要な物理的過程の<br>研究                                              |
| 1984 | C. Rubbia, S. van der Meer<br>素粒子(W. Z 粒子)の発見をも<br>たらしたプロジェクトへの貢 |
| 1985 | K. von Klitzing 量子ホール効<br>果の発見と物理定数の測定技<br>術の開発                  |
| 1986 | E. Ruska 電子顕微鏡に関する<br>基礎研究と開発                                    |
|      | G. Binnig, H. Kohrer 走 査 型<br>トンネル顕微鏡の開発                         |
| 1987 | J. G. Bednorz, K. A. Muller<br>酸化物高温超伝導体の発見                      |
| 1988 | L. Lederman, M. Schwartz, J.                                     |
|      | Steinberger μニュートリノ<br>の発見とレプトンの2重構造<br>の実証                      |
| 1989 | N. F. Ramsey, H. G. Delmlt,<br>W. Paul 高精度原子分光法                  |
| 1990 | の開発<br>J. I. Friedman, H. W. Ken-                                |
|      | dall, R.E. Taylor 陽子と重<br>水素核による電子の深部非弾<br>性散乱に関する研究             |
| 1991 | G. de Gennes より複雑な高分<br>子,液晶,超伝導磁性材料の相<br>転移現象の数学的研究             |
| 1992 | G. Charpak 素粒子実験用の多<br>線式比例計数箱の開発                                |
| 1993 | R. A. Halse, J. H. Taylor 連<br>星バルサーの発見                          |
| 1994 | B. N. Brockhouse, C. G. Shull<br>高密度物質研究のための中性<br>スサイロ法の開発       |
| 1995 | M. L. Perl, F. Reines レプト<br>ン(軽粒子)物理学の先駆的実                      |
| 1996 | D. M. Lee, R. C. Richardson                                      |
|      | D. D. Osheroff ヘリウム3<br>の超流動の発見                                  |
| 1997 | S. Chu, C. Cohen-Tannoudji,<br>W. D. Phillips レーザーを              |

#### 1998: R. B. Laughlin, H. L. Stormer and D. C. Tsui, 分数量子電荷の量子流体状態の研究

2001: E. A. Cornell, W. Ketterle, C. R. Wieman, アルカリ原子のボーズ・アインシュタイン凝縮

#### 2003年 ノーベル賞

(昨年は低温の当たり年/3部門とも低温絡み)

物理: A.A. Abrikosov, V. V. Ginzburg, A. J. Leggett,

超伝導と超流動の理論

化学: P. Agre: アクアポリオン膜の水チャンネル

(本学の極低温顕微鏡が重要な仕事をした)

R. MacKinnon: イオン・チャンネル

医学: P. C. Lauterbur and P. Mansfield,

MRIの開発(超伝導マグネット)