

21世紀COEプログラム提供

「高温超伝導体のイントリンシック・ジョセフ ソン接合とその応用」

> 電子工学専攻 鈴木 実

アウトライン

1. 超伝導の基礎 2. 超伝導の応用 ジョセフソン効果 3. 高温超伝導について ▶4. 高温超伝導の応用 ▶5. 高温超伝導のジョセフソン効果 6. 高温超伝導ジョセフソン接合の問題 7. 固有ジョセフソン接合 8. トンネル分光による高温超伝導の研究 9. 高温超伝導における異常なジョセフソン効果

超伝導とは

相転移現象

T_c 転移温度で発現

- 1. 完全導電性(抵抗ゼロ)
- 2. 完全反磁性(マイスナー効果)

超伝導体では、"電気抵抗"の値が温度を下げていくと突然"ゼロ" になります。この温度を臨界温度Tcと呼びます。

超伝導ってどんなもの?

(2) 完全反磁性 (マイスナー効果)

超伝導状態にある物体を磁力中に置くと、その物体の内部から 磁力線が押し出されます。これを"完全磁性"と呼びます。

完全導電体のシールディング効果とは異なる

なぜ超伝導がよいのか

応用 極低消費電力 抵抗ゼロ(ピニング技術) 超高速 ジョセフソン効果

応用へのハードル 冷却 従来は液体ヘリウム 高温超伝導以後は小型冷凍機

T_c(超伝導転移温度)は高いほど良い

現状のT_cで応用

シリコン、他の材料では実現でき ない機能

もっと高いT_cの超伝導物質を探す

高温超伝導の機構を解明することが重要

応用
大規模応用(電力、強磁場、、、)
エレクトロニクス応用
マイクロ波応用
デジタル応用
ジョセフソン接合

- 2. 超伝導機構解明 物性研究、トンネル分光、、、、
- 3. 新超伝導物質探索

超伝導の特徴

なぜ電気抵抗はゼロになるのか

電子系が一つの剛体になる 一部の電子が電子対形成 Nbの場合、価電子のたった

0.01%が対形成

超伝導の特徴

コヒーレンス長

超伝導オーダー・パラメーターが空間的に変化 する長さの程度

コヒーレンス長が短いと欠陥に敏感
コヒーレンス長が長いと欠陥に強い
AI 1µm
YBa₂Cu₃O₇ 1nm

超伝導の特徴

位相(オーダーパラメータの位相)

位相が空間変化すると超伝導電流が 流れる。

位相はベクトルポテンシャルで変化する。

ベクトルポテンシャルは磁場で決まる。

超伝導の応用

1. 抵抗ゼロを利用する応用

超伝導マグネット、超伝導発電機、 超伝導電力貯蔵、超伝導電磁推進、 マイクロ波各種素子、超伝導送電線、など

2. ジョセフソン効果を利用する応用

超高感度磁場検出(SQUID)、 デジタル応用(SFQ)、マイクロ波能動素子、 テラヘルツ能動素子、量子情報素子など

ジョセフソン効果

1962年 B.D.Josephsonが理論で 予言

1963年 J.M.Rowell & P.W.Anderson実験で確 認

B.D. Josepshon

高温超伝導とは

導電性銅酸化物で発見された ヤーン・テラー効果 銅酸素八面体が上下に伸張している 大きな異方性 二次元性 2次元ハイゼンベルグ・モデル 電荷とスピンの自由度をもつ系 強相関電子系

高温超伝導の発見 1986年

J. G. Bednorz 高重正明 K. A. Muller 1987年度ノーベル物理学賞受賞

高温超伝導を用いた超伝導応用

冷却が簡単になった

材料加工・素子形成が難しくなった。 コヒーレンス長が非常に短くなったため

- 1. 抵抗ゼロ特性を利用するもの
 - 超伝導線材(直冷式超伝導マグネット) 電流リード 超伝導フィルタ(携帯電話基地局用) 限流器
- 2. ジョセフソン効果を利用するもの SQUID(超伝導量子干渉デバイス) デジタル応用(高速A/D変換、RSFQ)

Bi2223系テープ線材 (1kmx4mmx0.25mm) 61芯 臨界電流100A(77K) 240A(20K) 冷凍機直結型超伝導マグネット用 (住友電工)

Bi2212線材 (2mm径) 1320芯 臨界電流1000A (4K) 超強磁場用 (日立製作所)

携帯電話基地局用高温超伝導フィルタシステム

Conductus

高温超伝導体と金属超伝導体のdc SQUID

高温超伝導 dc SQUID YBCO biepitaxial 粒界ジョセフソン接合

高温超伝導回路の微細化がまだ不十分

K. Likharev

ラッチ型と単一磁束量子(SFQ)ジョセフソン論理回路の特徴の比較

項目	ラッチ型	単一磁束量子型(SFQ)
情報担体	ジョセフソン接合の電圧状態	電圧パルス(磁束量子 $_{0}=V$) $\downarrow \qquad \downarrow \qquad$
クロック	2~3 GHz	100 GHz ~ 300 GHz
同期	交流外部タイミング	直流セルフタイミング
消費電力	2µW/b(LTS),20µW/b(HTS) 2mW / 接合2000個	10-19J/bit 0.1W /接合500,000個(VLSI) (3W /バイアス抵抗含む)
Ŀ	2 m A	100 μ Α
実績	8b itデジタルシグナルプロセッ サ(Nb)、接合数22 ,000個	4ビット乗算器(Nb),ジョセフ ソン接合数1,100個
メモリ	磁束量子保持型	磁束量子保持型

SiとSFQのCPUクロックの比較トレンド

K. Likharev

高温超伝導体のジョセフソン効果応用

 1. 高温超伝導体のジョセフソン効果応用 遅れている

2. 高温超伝導体のジョセフソン接合の問題点
A. 接合品質

- B. 微細プロセス技術
- C. 最大ジョセフソン電流 J_c が小さい 微細化へのネック

ジョセフソン接合の障壁層形成法

金属超伝導体(Low T_c)の場合 表面にNative Oxideの皮膜を形成

高温超伝導体(High T_c)の場合 もともと酸化物 Native Oxide皮膜の方法が援用できない 異種物質積層(困難)

トンネル型ジョセフソン接合形成が困難

高温超伝導体のジョセフソン接合形成法

(h) Edge or Ramp edge 接合

高温超伝導体のジョセフソン接合構造

(g) a-軸 積層型接合

(f) 'poisoned' ブリッジ

step junction

[100]

[100]

3.5° tilt YBCO Grain boundary

31[°] tilt YBCO Grain boundary

Rev. Mod. Phys. 74,485

粒界ジョセフソン接合

高温超伝導体では結晶粒界がジョセフソン接合になる コヒーレンス長が短い

粒界の形成を制御する ステップ接合 バイエピタキシャル粒界接合

トンネル型(SIS)のジョセフソン接合は形成困難 ウィークリンク型(SNS)のジョセフソン接合は形成可

粒界ジョセフソン接合の問題

ジョセフソン電流密度が小さい LTSジョセフソン接合の1/10以下

最大ジョセフソン電流の大きさ Ambegaokar-Baratoff理論 $\pi\Delta$ tanh 超伝導ギャップ $2eR_{N}$ 常伝導トンネル抵抗 R_{N} $(T \approx 0)$ I_{c} 常伝導トンネル抵抗 $2eR_{N}$ $\frac{\pi\Delta}{2} \approx 2\Delta/e$ $I_{c}R_{N}$ *I*_c*R*_N 積は超伝導ギャップ **☆**大きさにほぼ等しい △の自乗は超伝導電子対濃度に比例する

理想的なトンネル型ジョセフソン接合特性

固有ジョセフソン接合

層状結晶構造がそのままジョセフソン接合 Bi-Sr-Ca-Cu-O系高温超伝導体など 接合界面が原子レベルで平坦 理想的なトンネル型ジョセフソン接合特性

小さい I_cは果たして本質的な問題か 固有ジョセフソン接合でジョセフソン電流を調べる

1. 固有ジョセフソン接合

層状結晶構造に内蔵

天然のトンネル型 ジョセフソン接合

理想的な特性

積層構造

固有ジョセフソン接合の微小メサ構造 電流の自己注入による発熱が著しい

結晶そのままではトンネル型ジセフソン接合特性は観察 できない

微細加工による微小メサ構造の形成

層数 15nm ~10 層

寸法 5∽10µm角

微小メサ構造パタン1/3

$10 \,\mu$ m x $10 \,\mu$ m Mesa Pattern

$5 \,\mu$ m x $5 \,\mu$ m Mesa Pattern

011201-3 x400

011201-9 x400

微小メサ構造パタン2/3

$10 \,\mu$ m x $10 \,\mu$ m Mesa Pattern

$5 \,\mu \,m \,x \, 5 \,\mu \,m$ Mesa Pattern

011110-5C x400

011208-6 x400

X: 10 mV/div

Y: 2 µA/div

T: 6 K

固有ジョセフソン接合を用いたトンネル分光 超伝導ギャップと R_N 常伝導トンネル抵抗を測定する Δ $I_c = \frac{\pi \Delta}{2eR_N} \tanh \frac{\Delta}{2T}$ $I_c = \frac{\pi \Delta}{2eR_M}$ $(T \approx 0)$ トンネル分光(固有ジョセフソン接合の電流電圧特性) 問題点と対策 1. 発熱の抑制 a 微小・極薄メサ構造 b 短パルス法(~300 ns) 2. メサ試料降伏電圧の改善 a 複合パルス波形の使用

結果は、2Δ/e~60mV、I_cR_Nより1桁以上大きい ジョセフソン効果の異常は高温超伝導に本質的である

固有ジョセフソン接合を用いたトンネル分光

固有ジョセフソン 接合で Ambegaokar-Baratoff 理論を検 討する

 $I_c R_N \cong 2 \text{mV}$ $2\Delta/e \cong 60 \text{mV}$ AB理論 $\left[I_c R_N = \frac{\pi \Delta}{2e} \approx 2\Delta/e \right]$ と適合しない

固有ジョセフソン接合も粒界ジョセフソン接合と同じ 小さい I_cR_N 問題は本質的!

最大ジョセフソン電流 I。はドーピング量に敏感に依存する

 1. 最大ジョセフソン電流 I_cが理論値の1/10以下 I_c R_N 積が異常に小さい
2. 最大ジョセフソン電流 I_c の異常なキャリア濃度 依存性 ドープ量とともに超伝導電子濃度∆は減少するのに ジョセフソン電流 I_c は増加する Ambegaokar-Baratoff理論との比較

最大ジョセフソン電流に関するAmbegaokar-Baratoffの理論

$$I_{c} = \frac{\pi \Delta}{2eR_{N}} \quad (T \approx 0)$$

0.65倍, $1/R_{N}$ 4.7倍 $\longrightarrow I_{c}$ 3.1倍

実験(15倍)と合わない 均一な系では説明できない これを説明するには 超伝導状態は不均一(非一様)でなければならない

相分離モデルにおけるジョセフソン電流

S

ソン電流の流れる領域

超伝導相 占める割合 *f*_S

常伝導相 占める割合 1*-f*_S (高抵抗)

超伝導相が対向する(ジョセフソン電流 が流れる)面積の割合 f_s^2

 $I_{c} = \Delta_{SG} f_{S}^{2}$ キャリアドープ量を増加する $f_{S} \propto \sigma_{c}$ 4.7倍 Δ_{SG} 0.65 倍 I_{c} 14.4 **倍**

実験結果15倍と一致

ジョセフソン電流の流れない領域

高温超伝導状態の超伝導状態に関する新しい知見

高温超伝導体の超伝導状態は本質的に ミクロに相分離している

応用では過剰ドープ組成が特性改善に有効

相分離(非一様)モデルにより理解できること

- 1. 小さなジョセフソン電流(小さな $I_c R_N$ 積)
- 2. 最大ジョセフソン電流のドープ量依存性
- 3. Fraunhofer干渉パタンが観察されないこと
- 4. ジョセフソン接合で観察される速い準粒子拡散
- 5. 高温超伝導体接合のself-shunted-junction特性
- 6. Ioffeリミットに違反するc軸方位金属電気伝導
- 7. large junction 効果
- 8. その他

まとめ

- 1. 高温超伝導体の応用と理解について
- 2. 高温超伝導体のジョセフソン効果とその応用
- 3. 高温超伝導体の異常なジョセフソン効果
- 4. 固有ジョセフソン接合
- 5. 微小メサ構造とビスマス系高温超伝導体の固有ジョセフ ソン接合の特性。
- 6. 高温超伝導体の超伝導状態とミクロに相分離
- 7. 高温超伝導の応用とドープ量の関係

高ドープ量組成が有利