量子力学の基礎
北野正雄 (京都大学大学院工学研究科)
kitano@kuee.kyoto-u.ac.jp 2007年10月16日
この内容は京都大学工学部電気電子工学科における授業「電気電子工学のための量子論」の補助資料として準備されたものです。個人使用以外の目的で利用される場合には著者の許諾を得てください。

第8章
パウリ行列と2状態系

2状態系はもっとも簡単な量子系である。光子の偏光状態、電子や原子核のスピン状態 ($J = 1/2$)、共鳴光に対する原子の応答モデルとしての2準位原子などが、2状態系として扱われる。簡単な系ではあるが、量子系の本質の多くの部分がすでにここに現れている。

キーワード: パウリ行列、複合共振器、ラピ振動、プロホペクトル、スピノール、ベリーリ相

8.1 パウリ行列

2状態系に対するヒルベルト空間の次元は $n = 2$ であり、演算子は 2×2 の行列で表現される。以下の3つの 2×2 行列をパウリ行列(Pauli matrices)あるいは、パウリ演算子とよぶ；

$$
\hat{\sigma}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \hat{\sigma}_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \hat{\sigma}_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
$$

(8.1)

パウリ行列はいずれもエルミートである。ユニタリでもある。パウリ行列は以下のよう性質をもつ；

$$
\hat{\sigma}_1^2 = \hat{\sigma}_2^2 = \hat{\sigma}_3^2 = 1, \quad \hat{\sigma}_1 \hat{\sigma}_2 = -\hat{\sigma}_2 \hat{\sigma}_1 = i\hat{\sigma}_3,
$$

$$
\hat{\sigma}_2 \hat{\sigma}_3 = -\hat{\sigma}_3 \hat{\sigma}_2 = i\hat{\sigma}_1, \quad \hat{\sigma}_3 \hat{\sigma}_1 = -\hat{\sigma}_1 \hat{\sigma}_3 = i\hat{\sigma}_2.
$$

(8.2)
まとめて表すと、

\[\hat{\sigma}_i \hat{\sigma}_j = \delta_{ij} \hat{1} + i \sum_{k=1}^{3} \epsilon_{ijk} \hat{\sigma}_k. \] \((8.3) \)

\(\epsilon_{ijk} \) はリビ・チビタ (Levi Civita) の記号である。

\[\epsilon_{ijk} = \begin{cases} 1 & (i, j, k \text{ がサイクリックのとき}) \\ -1 & (i, j, k \text{ が反サイクリックのとき}) \\ 0 & (その他の場合) \end{cases} \] \((8.4) \)

交換関係は

\[[\hat{\sigma}_i, \hat{\sigma}_j] = 2i \sum_{k=1}^{3} \epsilon_{ijk} \hat{\sigma}_k \] \((8.5) \)

である。

3 つの演算子を形式的に 3 次元ベクトルとしてまとめたものを

\[\hat{\sigma} = \hat{\sigma}_1 e_1 + \hat{\sigma}_2 e_2 + \hat{\sigma}_3 e_3 \equiv (\hat{\sigma}_1, \hat{\sigma}_2, \hat{\sigma}_3) \] \((8.6) \)

のように表す。\(\{ e_i \} \) は 3 次元実空間の正規直交基底である。このように、演算子がベクトルの成分になっているものをベクトル演算子とよぶ。3 次元空間の別の基底 \(\{ e'_i \} \) が

\[e_i = \sum_j e'_j R_{ji} \] \((8.7) \)

であるとき、\(\hat{\sigma} = \hat{\sigma}'_1 e'_1 + \hat{\sigma}'_2 e'_2 + \hat{\sigma}'_3 e'_3 \) における成分は

\[\hat{\sigma}'_j = \sum_{i} R_{ji} \hat{\sigma}_i \] \((8.8) \)

のように変換されるものとする。

問題 8.1 \(\hat{\sigma}'_i \hat{\sigma}'_j \) を求めよ。

問題 8.2 \(e_1 = \cos \theta e'_1 - \sin \theta e'_2, e_2 = \sin \theta e'_1 + \cos \theta e'_2 \) のとき、\(\hat{\sigma}'_i (i = 1, 2, 3) \)を具体的に求めよ。

問題 8.3 \(\text{Tr} \hat{\sigma}_i, \text{det} \hat{\sigma}_i \) を求めよ。

通常の数ベクトル \(\boldsymbol{a} = a_1 e_1 + a_2 e_2 + a_3 e_3 \equiv (a_1, a_2, a_3) \) との内積

\[\hat{\sigma}_a = \hat{\sigma} \cdot \hat{\sigma} = a_1 \hat{\sigma}_1 + a_2 \hat{\sigma}_2 + a_3 \hat{\sigma}_3 \] \((8.9) \)

\footnote{積に関しては \(\{ 1, \sigma_1, \sigma_2, \sigma_3 \} \) が閉じている。交換子に関しては、\((\sigma_1, \sigma_2, \sigma_3) \) が閉じている。}

88 第 8 章 パウリ行列と 2 状態系 \(\text{sp.tex, v. 1.7 (2007/10/16)} \) ©2007, Masao Kitano
は（スカラー）演算子である。

美しい関係

\[\hat{\sigma}_a \hat{\sigma}_b = (a \cdot \hat{\sigma})(b \cdot \hat{\sigma}) = (a \cdot b) \hat{1} + i(a \times b) \cdot \hat{\sigma} \quad (8.10) \]

と示すことはやさしい。

単位ベクトル \(\mathbf{u} \equiv (u_1, u_2, u_3) \) に対して, \(\hat{\sigma}_u = \mathbf{u} \cdot \hat{\sigma} \) を考える。行列では

\[\hat{\sigma}_u \equiv \begin{bmatrix} u_3 & u_1 - iu_2 \\ u_1 + iu_2 & -u_3 \end{bmatrix} \quad (8.11) \]

と表され。固有値は ±1 である。スペクトル分解は

\[\hat{\sigma}_u = (+1) \frac{\sigma_u + \hat{1}}{2} + (-1) \frac{\sigma_u - \hat{1}}{2} \quad (8.12) \]

であることがから、その指数演算子が

\[\exp(i \theta \hat{\sigma}_u) = \cos \theta \hat{1} + i \sin \theta \hat{\sigma}_u \quad (8.13) \]

となることは容易に示せる。

2 次元のエルミート行列の（実数としての）自由度は 4 である。また、

\[\text{Tr} (\hat{\sigma}_i \hat{\sigma}_j) = 2 \delta_{ij}, \quad \text{Tr} (\hat{\sigma}_i \hat{1}) = 0, \quad \text{Tr} \hat{1}^2 = 2 \quad (8.14) \]

が成り立つ。\((\hat{1}, \hat{\sigma}_1, \hat{\sigma}_2, \hat{\sigma}_3) \) は 2 次元エルミート演算子がつくる（4 次元）実線形空間
における直交基底の役割を果たす。基底ベクトルの長さはいずれも \(\sqrt{2} \) である。任意の 2 次元エルミート演算子 \(\hat{A} \) は

\[\hat{A} = \frac{a_0}{2} \hat{1} + \frac{a_1}{2} \hat{\sigma}_1 + \frac{a_2}{2} \hat{\sigma}_2 + \frac{a_3}{2} \hat{\sigma}_3 \quad (8.15) \]

のように基底で展開することができる。ただし、展開係数は

\[a_0 = \text{Tr}(\hat{A} \hat{1}) = \text{Tr} \hat{A}, \quad a_i = \text{Tr}(\hat{A} \hat{\sigma}_i) \quad (i = 1, 2, 3). \quad (8.16) \]

トレースがゼロの列はに対して \(a_0 = 0 \) であり, \((a_1, a_2, a_3)\) に対応づけることができる。

8.2 複合共振回路と 2 状態系のアナロジー

LC 共振器 [図 8.1(a)] の電圧 \(v \), 電流 \(i \) は次のような微分方程式

\[C \frac{dv}{dt} = i, \quad L \frac{di}{dt} = -v \quad (8.17) \]

を満たす。それぞれの式に \(v, i \) をかけて和をとると,

*2) \(A_1, A_2 \) が \(n \) 次元エルミート演算子, \(c_1, c_2 \) が実数のとき, \(c_1 A_1 + c_2 A_2 \) も \(n \) 次元エルミート演算子である。
\[\frac{d}{dt} U = 0, \quad U = \frac{1}{2} (Cv^2 + Li^2) \sim J \] (8.18)

が得られる。これは共振回路に蓄えられるエネルギー \(U \) が時間的に保存することを意味する。

ここで、正規化された複素変数

\[u = \sqrt{\frac{C}{2U}} v + i \sqrt{\frac{L}{2U}} i \sim 1 \] (8.19)

を導入する。その時間発展は

\[\frac{du}{dt} = -i\omega u \] (8.20)

で与えられる。ただし、\(\omega = 1/\sqrt{LC} \) とおいた。ここで、\(|u|^2 \) が時間的に保存されることに注意する。両辺に \(h \) を形式的にかけてみると,

\[ih \frac{du}{dt} = (h\omega) u \] (8.21)

のような、(1 状態系の) シュレディンガー方程式に相当する式が得られる。解はいずれまでもなく、\(u(t) = u(0)e^{-i\omega t} \) である。

上の議論を結合共振器に拡張する。2 つの LC 共振器が相互インググタンス \(M \) で結合されているとする[図 8.1(b)]:

\[
\begin{align*}
C_1 \frac{dv_1}{dt} &= i_1, \\
L_1 \frac{di_1}{dt} &= -v_1 - M \frac{di_2}{dt} \\
C_2 \frac{dv_2}{dt} &= i_2, \\
L_2 \frac{di_2}{dt} &= -v_2 - M \frac{di_1}{dt}.
\end{align*}
\] (8.22)

エネルギーは

\[
U = \frac{1}{2} (C_1 v_1^2 + L_1 i_1^2 + C_2 v_2^2 + L_2 i_2^2 + 2Mi_1 i_2)
\sim \frac{1}{2} (C_1 v_1^2 + L_1 i_1^2 + C_2 v_2^2 + L_2 i_2^2) \] (8.23)

である。結合項のエネルギーへの寄与は十分小さいと仮定した。(\(L_1, L_2 \ll |M| \)が成り立っていればよい。)
1 状態系の場合を参考に

$$u_k = \sqrt{\frac{C_k}{2U}} v_k + i \sqrt{\frac{L_k}{2U}} i_k \quad (k = 1, 2) \tag{8.24}$$

という複素変数とともに、結合がない場合 ($M = 0$) の各共振器の共振周波数 $\omega_i = 1/\sqrt{L_i C_i}$ ならびに、結合係数 $\beta = M/\sqrt{L_1 L_2}$ を導入する。エネルギー保存より正規化条件 $|u_1|^2 + |u_2|^2 = 1$ が成り立つ。

運動方程式は

$$\begin{align*}
\frac{d u_1}{d t} &= \omega_1 u_1 + (\alpha/2) u_2 \\
\frac{d u_2}{d t} &= \omega_2 u_2 + (\alpha/2) u_1
\end{align*} \tag{8.25}$$

となる。ただし、$|\omega_1 - \omega_2| \ll (\omega_1 + \omega_2)/2$ であるとして、$\alpha \sim \omega_1 \beta$, $\alpha \sim \omega_2 \beta$ とおいた。さらに、以下の近似を行った。u_1 は結合がない場合、$-\omega_1$ で振動する。結合項には u_2 だけでなく、u_3 も現れる。前者が $-\omega_2$ で振動するのに対して、後者は $+\omega_2$ で振動する。周波数の隔たりの大きい後者は殆ど影響を及ぼさないので無視することができた。

パウリ行列を用いて書き直すと

$$i\hbar \frac{d}{dt} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \hbar \begin{bmatrix} \omega_1/2 + (\omega_1 - \omega_2) \alpha/2 & \alpha/2 \\
\alpha/2 & \omega_2/2 + (\omega_1 - \omega_2) \alpha/2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \tag{8.26}$$

が得られる。\hbar を両辺にかけたのは量子系とのアナロジーのためである。

ここで、右辺の第 1 項を消すために、$c_1 = e^{i\alpha t} u_1$, $c_2 = e^{i\alpha t} u_2$ とおくと,

$$i\hbar \frac{d}{dt} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \hbar \begin{bmatrix} \alpha/2 \alpha/2 \\
\alpha/2 & \alpha/2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \tag{8.27}$$

が得られる。ただし、$\overline{\omega} = (\omega_1 + \omega_2)/2$, $\omega_0 = \omega_1 - \omega_2$ とおいた。

さらに、$|\psi(t)\rangle = c_1(t)|1\rangle + c_2(t)|2\rangle$ とおくと、運動方程式は $i\hbar(d/dt)|\psi(t)\rangle = \hat{H}|\psi(t)\rangle$ と表すことができ、ハミルトニアンに相当するものは

$$\hat{H} = \hbar \omega_0 \hat{\sigma}_3/2 + \hbar \alpha \hat{\sigma}_1/2 = \hbar \Omega \hat{\sigma}_u/2 \tag{8.28}$$

となる。ここで、$\Omega = \sqrt{\omega^2 + \alpha^2}$, $\hat{\sigma}_u = \cos \theta \hat{\sigma}_3 + \sin \theta \hat{\sigma}_1$, $\theta = \tan^{-1}(\alpha/\omega_0)$, $\alpha = \sin \theta e_1 + \cos \theta e_3$。

時間発展演算子は

$$\hat{U}(t) = \exp \frac{\hat{H}t}{i\hbar} = \exp \left(-i\Omega t \hat{\sigma}_u/2 \right) = i \cos \Omega t/2 - i \sin \Omega t/2 \quad (8.29)$$

となる。成分表示すると,

$$\hat{U}(t) = \begin{bmatrix}
\cos(\Omega t/2) + i \cos \theta \sin(\Omega t/2) & 0 \\
\sin(\Omega t/2) & \cos(\Omega t/2) + i \cos \theta \sin(\Omega t/2)
\end{bmatrix} \tag{8.30}$$
\(\theta = 0 \) の場合には、

\[
\hat{U}(t) = \begin{bmatrix}
 e^{-i(\omega_0/2)t} & 0 \\
 0 & e^{i(\omega_0/2)t}
\end{bmatrix},
\]

これは結合がない場合（\(\alpha = 0 \) であって、2つの共振器（状態）が独立に振動している状況を表している。

\(\theta = \pi/2 \) つまり、これは2つの共振器の共振周波数がちょうど等しい場合には、

\[
\hat{U}(t) = \begin{bmatrix}
 \cos(\alpha/2)t & -i\sin(\alpha/2)t \\
 -i\sin(\alpha/2)t & \cos(\alpha/2)t
\end{bmatrix}
\]

となる。例えば、\(|\psi(0)\rangle = |1\rangle \) から出発すると、

\[
|\psi(t)\rangle = \hat{U}(t)|1\rangle = \cos \left(\frac{\alpha}{2} t \right) |1\rangle - i \sin \left(\frac{\alpha}{2} t \right) |2\rangle
\]

のように、\(|\psi(\pi/\alpha)\rangle = |2\rangle \) と変化し、さらに \(|\psi(2\pi/\alpha)\rangle = |1\rangle \) と周期的に状態が変化する。これはいわゆる、連続振動とよばれるものである。2状態系に対してはラビ振動と名称が使われる。

8.3 2状態系の一般論

2状態系の状態は基底を \{ |1\rangle, |2\rangle \} とすると、ケット

\[
|\psi(t)\rangle = c_1(t)|1\rangle + c_2(t)|2\rangle
\]

で表される。運動方程式は

\[
i\hbar \frac{d}{dt} |\psi\rangle = \hat{H}(t)|\psi\rangle
\]

である。保存則 \(|c_1|^2 + |c_2|^2 = 1 \) が成り立つ。ハミルトニアンは、パウリ行列を用いて

\[
\hat{H}(t) = \hbar \Omega(t) \cdot \hat{\sigma}, \quad \Omega(t) = \sum_{i=1}^3 \Omega_i(t)e_i = \Omega(t)u
\]

と表すことができる。\(u = \Omega / \Omega, \Omega = |\Omega| \)。ハミルトニアンに含まれる \(\Omega_0 \hat{1} \) は共通位相にしか影響は及ぼさず、エネルギーの基準を2状態の平均にとれば、除くことができる。

運動方程式を解くと、時間発展演算子は

\[
\hat{U}(t) = \hat{1} \cos \left(\frac{\Omega}{2} t \right) - i\hbar \sigma_u \sin \left(\frac{\Omega}{2} t \right).
\]

これによって任意のハミルトニアン、任意の初期条件に対する運動を計算することが可能である。
そこで，$\hat{\sigma}_3 = (+1)|1⟩⟨1| + (-1)|2⟩⟨2|$ は，2 つの状態を識別する演算子であり，状態 1 に対して値 +1，状態 2 に対して値 −1 を与えている。
一方，$\hat{\sigma}_1 = |1⟩⟨2| + |2⟩⟨1|$ は，2 つの状態を結合するエルミート演算子である。$\hat{\sigma}_2 = i(|1⟩⟨2| - |2⟩⟨1|)$ も同様である。複合共振回路モデルでは $\hat{\sigma}_1$ のみが現れたが，結合の仕方を変えると，$\hat{\sigma}_2$ を導入することもできる。

ここで述べた演算子の役割は絶対的なものではなく流動的である。2 つの共振器の対称モード $|S⟩ = (|1⟩ + |2⟩)/\sqrt{2}$ と反対称モード $|A⟩ = (|1⟩ - |2⟩)/\sqrt{2}$ を基準に考える場合には，$\hat{\sigma}_1$ が状態識別の演算子，$\hat{\sigma}_2，\hat{\sigma}_3$ が結合の演算子となる。2 つの共振器の周波数が等しく ($\omega_0 = 0$)，$\hat{\sigma}_1$ で結合している場合には，このモード展開が自然なものとなる。

また，σ_2 で結合している場合には，$|+⟩ = (|1⟩ + i|2⟩)\sqrt{2}$，$|−⟩ = (|1⟩ - i|2⟩)\sqrt{2}$ が基本モードとなり，σ_2 が状態識別，$\sigma_3，\sigma_1$ が結合の演算子となる。

8.4 ブロッホベクトル

2 状態系の状態は 2 つの複素数（自由度 4）で決定されるが，正規化条件と共通位相のため，本質的な自由度は 2 にすぎない。実数で状態を特徴づけることを試みよう。まず，密度演算子 $\hat{\rho} = |\psi⟩⟨\psi|$ を導入する。具体的に成分で表すと，

$$\hat{\rho} = |c_1|^2|1⟩⟨1| + c_1 c_2^*|1⟩⟨2| + c_2^* c_1|2⟩⟨1| + |c_2|^2|2⟩⟨2|$$

$$\hat{\rho} = \begin{pmatrix} |c_1|^2 & c_1 c_2^* \\ c_2^* c_1 & |c_2|^2 \end{pmatrix}$$

パウリ行列を用いて

$$\hat{\rho} = s_0 \frac{1}{2} + s_1 \frac{\hat{\sigma}_1}{2} + s_2 \frac{\hat{\sigma}_2}{2} + s_3 \frac{\hat{\sigma}_3}{2}$$

とおくと，各成分は

$$s_0 = \text{Tr} \hat{\rho} = |c_1|^2 + |c_2|^2 = 1$$
$$s_1 = \text{Tr}(\hat{\rho} \hat{\sigma}_1) = c_1^* c_2 + c_2^* c_1$$
$$s_2 = \text{Tr}(\hat{\rho} \hat{\sigma}_2) = c_1 c_2^* - c_2 c_1^*$$
$$s_3 = \text{Tr}(\hat{\rho} \hat{\sigma}_3) = |c_1|^2 - |c_2|^2$$

(8.40)

と表せる。係数から作った空間ベクトル

$$\mathbf{s} = s_1 \mathbf{e}_1 + s_2 \mathbf{e}_2 + s_3 \mathbf{e}_3 = \text{Tr}(\hat{\rho} \hat{\sigma}) \equiv (s_1, s_2, s_3)$$

(8.41)

をブロッホベクトルという。

$$|\mathbf{s}|^2 = 1$$

(8.42)
であることに注意する。すなわち、単位球面上の点が2状態系の状態を表し、球面上の点は、緯度 \(\pi/2 - \theta \)、経度 \(\phi \) の2つの実パラメータで表すことができる。

問題 8.4 球面上の主な点を2状態系の状態に対応づけてみよ。

8.5 ブロッホベクトルの運動

まず、密度算子の運動方程式を求めよう。ケットに対する運動方程式は

\[
\frac{\hbar}{i} \frac{d}{dt} |\psi\rangle = \hat{H}(t) |\psi\rangle
\]

(8.43)

ここで \(\hat{H}(t) \) はハミルトニアンである。時間に依存しても構わない。

密度算子に対する運動方程式は,

\[
\frac{\hbar}{i} \frac{d}{dt} \hat{\rho} = [\hat{H}(t), \hat{\rho}]
\]

(8.44)

である [式 (7.36)]。パウリ算子によってハミルトニアンを

\[
\hat{H}(t) = \sum_{i=1}^{3} \hbar \Omega_i(t) \hat{\sigma}_i
\]

(8.45)

密度算子を

\[
\hat{\rho}(t) = \frac{1}{2} + s(t) \cdot \frac{\hat{\sigma}}{2} = \frac{1}{2} + \sum_{j=1}^{3} s_j(t) \frac{\hat{\sigma}_j}{2},
\]

(8.46)

と表すことにする。いずれもエルミートであることに注意する。運動方程式 (8.44) の左辺は

\[
\frac{\hbar}{i} \frac{d}{dt} \hat{\rho} = i \hbar \left(\frac{d}{dt} s(t) \right) \cdot \frac{\hat{\sigma}}{2}
\]

(8.47)

右辺は

\[
[\hat{H}(t), \hat{\rho}] = \sum_{i=1}^{3} \sum_{j=1}^{3} \hbar \Omega_i(t) s_j(t) \frac{[\hat{\sigma}_i, \hat{\sigma}_j]}{4} = \sum_{i=1}^{3} \sum_{j=1}^{3} \hbar \Omega_i(t) s_j(t) \sum_{k=1}^{3} i \epsilon_{ijk} \frac{\hat{\sigma}_k}{2}
\]

(8.48)

\[
= i \hbar (\Omega(t) \times s(t)) \cdot \frac{\hat{\sigma}}{2}
\]

である。両辺を比較すると,

\[
\frac{d}{dt} s(t) = \Omega(t) \times s(t)
\]

(8.49)

を得る。\(a \cdot \hat{\sigma} = b \cdot \hat{\sigma} \) なら \(a = b \) が成り立つことに注意する。これは古典的な積差運動の方程式になっていることに注意する。

遷移の向きと位相

\[\frac{ds_3}{dt} > 0 \] の場合には、|\(c_1 \)| が増加し、|\(c_2 \)| が減少しているので、|\(2 \rangle \) から |\(1 \rangle \) に向けての遷移が起こっていると考えられる。式 (8.49) の第 3 成分は

\[\frac{d}{dt}s_3 = \Omega_1 s_2 - \Omega_2 s_1 \] \hspace{1cm} (8.50)

であるが、ここでは簡単のために、\(\Omega_1 > 0, \Omega_2 = 0 \) の場合を考えよう。\(ds_3/dt \) の正負は \(s_2 = 2|c_1||c_2|\sin(\phi_2 - \phi_1) \) の正負にしたがう。\(\phi_1, \phi_2 \) はそれぞれ \(c_1, c_2 \) の位相である。状態間の相対的な位相関係が遷移の方向を決めていることが分かる。

遷移の向きが |\(c_1 \)|, |\(c_2 \)| の大小関係、すなわち \(s_3 \) によって決まると考えながらであるが、これは全くの誤解である。位相の重要性をここで再認識したい。

問題 8.5 \(\Omega_2 > 0, \Omega_1 = 0 \) の場合を考えよ。

問題 8.6 遷移の向きを、ブロッホ球上の \(s \) の動きに対比させて考えよ。

8.6 2 状態系の例

多くの系が 2 状態系としてモデル化することができ、これまでの議論をあてはめることができる。いくつかの例を説明する。

8.6.1 偏光

光子の偏光は、これまで例として何度も登場している。標準的な基底としては、\(\{|H⟩, |V⟩\} \)、あるいは \(\{|R⟩, |L⟩\} \) がよく使われる。

偏光光子系を通過させることで、状態を変化させることができる。そのため、時間発展よりも、空間的な偏光状態の変化を追いかけられる場合が多い。偏光素
子が空間発展演算子に対応する。微分方程式で扱う場合でも左辺には \(d/dt \) ではなく、\(d/dz \) (\(z \) は光軸方向)を用いる。たとえば、ファラデー媒質（直線偏光を回転させる）の作用を微分形、積分形で表すと、

\[
\frac{d}{dz} \begin{bmatrix} c_H \\ c_V \end{bmatrix} = i\vartheta_1 \begin{bmatrix} c_H \\ c_V \end{bmatrix}, \quad \begin{bmatrix} c_H(z) \\ c_V(z) \end{bmatrix} = \begin{bmatrix} \cos vz & -\sin vz \\ \sin vz & \cos vz \end{bmatrix} \begin{bmatrix} c_H(0) \\ c_V(0) \end{bmatrix}
\]

(8.51)

ただし、\(v \) は長さあたりの回転角である。また、複屈折媒質では、

\[
\frac{d}{dz} \begin{bmatrix} c_H \\ c_V \end{bmatrix} = \kappa \sigma_3 \begin{bmatrix} c_H \\ c_V \end{bmatrix}, \quad \begin{bmatrix} c_H(z) \\ c_V(z) \end{bmatrix} = \begin{bmatrix} \exp(ikz) & 0 \\ 0 & \exp(-ikz) \end{bmatrix} \begin{bmatrix} c_H(0) \\ c_V(0) \end{bmatrix}
\]

(8.52)

のような空間変化が実現できる。\(k = \Delta nk_0, \Delta n \) は屈折率差、\(k_0 \) は真空中の波数である。

偏光の状態は古典的な場合でも球面で表すことができる。これはポアンカレ球と呼ばれている。

8.6.2 マッハツェンダー干渉計

マッハツェンダー干渉計における2つの光路それぞれを単一光子の量子状態だと考えることができる。

2つの経路に位相差 \(\alpha \) をあたえる移相器の働きは

\[
\hat{P}(\alpha) \doteq \begin{bmatrix} e^{i\alpha/2} & 0 \\ 0 & e^{-i\alpha/2} \end{bmatrix}
\]

(8.53)

と与えられる。

分波、合波に用いられるビームスプリッタは2つの状態間の遷移に対応するユニタリ変換をもたらす。たとえば、分岐比が 50% のビームスプリッタの作用
はユニタリ行列
\[
\hat{B} (\beta) = \frac{1}{\sqrt{2}} \begin{bmatrix}
1 & i e^{i\beta} \\
i e^{-i\beta} & 1
\end{bmatrix}
\]
(8.54)

で表される。\(\beta \) は入出力のポアの位相基準の選び方に依存するパラメータである。関係
\[
\hat{B} (\beta) = \hat{P} (\beta) \hat{B} (0) \hat{P} (-\beta)
\]
(8.55)

が成り立つ。良く使われる式は
\[
\hat{B} (0) = \frac{1}{\sqrt{2}} \begin{bmatrix}
1 & i \\
i & 1
\end{bmatrix}, \quad \hat{B} (\pi/2) = \frac{1}{\sqrt{2}} \begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix}.
\]
(8.56)

マッハツェンダー干渉計の作用は、（例えば \(\hat{B} (0) \) を用いると）

\[
|\psi\rangle' = \hat{B} (0) \hat{P} (\alpha) \hat{B} (0) |\psi\rangle
\]
(8.57)

で表される。入力ポート \(|a\rangle\) から入って、出力ポート \(|b\rangle\) に出る確率は
\[
P (a \rightarrow b) = |\langle b | \hat{B} (0) \hat{P} (\alpha) \hat{B} (0) |a\rangle|^2 = \frac{1 + \cos \alpha}{2}
\]
(8.58)

と計算できる。\(\alpha \) を変化させると確率が 0 と 1 の間で振動する。干渉形である。

8.6.3 スピン 1/2 粒子

電子や中性子のようにスピンの大きさが \(\hbar/2 \) の粒子は上向きスピン \(|\uparrow\rangle\)，下
向きスピン \(|\downarrow\rangle\) という内部自由度をもっている。角運動量はベクトル演算子
\(\vec{S} = (\hbar/2) \vec{\sigma} \) で表される。\(\{|\uparrow\rangle, |\downarrow\rangle\} \) は、任意に定めた量子化軸（z 軸）方向の角
運動量成分 \(\hat{S}_z = (\hbar/2) \sigma_3 \) の固有状態であり、
\[
\hat{S}_z |\uparrow\rangle = +(\hbar/2) |\uparrow\rangle, \quad \hat{S}_z |\downarrow\rangle = -(\hbar/2) |\downarrow\rangle
\]
(8.59)

を満たす。荷電粒子は角運動量に比例した磁気モーメント \(\mu = \gamma \vec{S} \sim Am^2 \) を
持っているので、磁場 \(\vec{B} \sim Vs/m^2 = T \) (テスラ) 中でのエネルギーは古典論
を用いて
\[
\hat{H} = -\mu \cdot \vec{B} = -\gamma \vec{S} \cdot \vec{B} = \hbar \Omega \cdot \vec{\sigma}/2
\]
(8.60)

となる。\(\gamma \sim 1/Ts \) は磁気回転数とよばれる定数で、電子の場合、\(g \) 因子 \(g \sim 2 \)
とボア磁子 \(\mu_B = e\hbar/2m_e \sim Am^2 \) を用いて、\(\gamma (\hbar/2) = -g \mu_B \) と表すことが
できる。また、\(\Omega = -\gamma B \) とおいた。
磁気共鳴
静電場 \(B_0 = B_0 e_3 \) と回転磁場 \(B_1(t) = B_1 (e_1 \cos \omega t + e_2 \sin \omega t) \) を同時にスピンに加えてみよう。トルクベクトルは,

\[
\Omega(t) = \omega_1 (e_1 \cos \omega t + e_2 \sin \omega t) + \omega_0 e_3
\]

(8.61)

である。\(\omega_1 = - \gamma B_1, \omega_0 = - \gamma B_0 \)。3 軸回りの回転を

\[
R(\theta) = e_1 e_1 \cos \theta + e_2 e_1 \sin \theta - e_1 e_2 \sin \theta + e_2 e_2 \cos \theta
\]

(8.62)

と表す。\(e_i e_j \) は空間ベクトルに対する演算子で \(e_k \) に作用させると、\((e_i \cdot e_k) e_i \) が作られる。角速度 \(\omega \) で回転する系から見ると、ベクトル \(s, \Omega \) はそれぞれ、

\[
s' = R(-\omega t)s, \quad \Omega' = R(-\omega t)\Omega(t) = \omega_1 e_1 + \omega_0 e_3
\]

(8.63)

と表せる。運動方程式は

\[
\frac{d}{dt} s' = \left(\frac{d}{dt} R(-\omega t) \right) s + R(-\omega t) \frac{d}{dt} s
\]

\[
= \omega R(-\omega t + \pi/2) R(\omega t) s' + R(-\omega t) (\Omega \times s)
\]

\[
= \omega R(\pi/2) s' + \Omega' \times s' = (\omega e_3) \times s' + \Omega' \times s' = (\Omega' - \omega e_3) \times s' = \Omega_{\text{eff}} \times s'
\]

(8.64)

となる。ここで有効トルク (磁場) は

\[
\Omega_{\text{eff}} = \omega_1 e_1 + (\omega_0 - \omega) e_3
\]

(8.65)

となる。回転磁場と同じ角周波数 \(\omega \) で回転することによって、\(B_1 \) が静電場となるとともに、回転軸に沿った静電場 \(B_0 \) は大きさが変化することが分かる。

\(\omega \) を変化させることを考える。\(|\omega - \omega_0| \gg |\omega_1| \) の場合には、\(\Omega_{\text{eff}} \) は 3 軸に近いので、\(s' \) は 3 軸の回りを回転するだけで、\(s'_0 (= s_3) \) は殆ど変化しない。つまり遷移は起こらない。これに対して、\(|\omega - \omega_0| \ll |\omega_1| \) の場合には、\(\Omega_{\text{eff}} \) は赤道面に近い。このとき、\(s' \) は \(\Omega_{\text{eff}} \) を中心に回転し、北半球と南半球のあいだを往復する。特に初期条件 \(s'(0) = \pm e_3 \) の場合には、子午線に沿って大きく振動する。すなわち、遷移が効率的に生ずることになる。このように、\(\omega \) が \(\omega_0 \) に一致した場合に遷移が生じる現象を共鳴遷移と呼ぶ。とくに、スピンにおける共鳴を磁気共鳴 (magnetic resonance) とよぶ。

回転磁場の代わりに振動磁場を利用することもできる。

\[
B_1(t) = B_1 e_1 \cos \omega t
\]

\[
= \frac{B_1}{2} (e_1 \cos \omega t + e_2 \sin \omega t) + \frac{B_1}{2} (e_1 \cos \omega t - e_2 \sin \omega t)
\]

(8.66)

と表すと、2 番目の項は逆回転をしており、共鳴条件から \(2\omega \) も離れているので
無視して差し支えない。このような近似を回転波近似（rotating-wave approximation）という。

8.6.4 2束位原子
レーザのように单调性のよい電磁波と原子の相互作用を扱う場合、レーザに共鳴している遷移の下束位と上束位だけを取り出して考えることができる。それぞれを、|1⟩, |2⟩ とすれば、原子系のハミルトニアンは

\[\hat{H}_0 = \hbar \omega_1 |1⟩⟨1| + \hbar \omega_2 |2⟩⟨2| \]

\[= \frac{\hbar}{2} (\omega_1 + \omega_2) ı \hat{s}_1 + \frac{\hbar \omega_0}{2} \hat{s}_3 \] \hspace{1cm} (8.67)

と表すことができる。\(\omega_0 = \omega_1 - \omega_2 \) は束位のエネルギー差を \(\hbar \) で割ったものである。原子の位置におけるレーザの電場を

\[E(t) = E_1 e_1 \cos \omega t \] \hspace{1cm} (8.68)

とおく。原子と電場の相互作用を表す時間に依存するハミルトニアンは

\[\hat{H}_1(t) = -\hat{d} \cdot E(t) \] \hspace{1cm} (8.69)

とかける。\(\hat{d} = e \hat{x} \) は原子の電気双極子を表す演算子で、

\[\hat{d} = d|2⟩⟨1| + \text{H.c.,} \quad d = ⟨2|d|1⟩ \] \hspace{1cm} (8.70)

と表せる。\(\hat{d} \) を実にするように、|1⟩, |2⟩ の位相をとると、\(\hat{d} = d \hat{s}_1 \) と表すことができ、

\[\hat{H}_1(t) = -d_1 E_1 \hat{s}_1 \cos \omega t = \hbar \omega_1 \hat{s}_1 \cos \omega t \] \hspace{1cm} (8.71)

となり、磁気共鳴の場合と同じ形になる。

8.7 2束面系の表現の比較

2束面系の状態は2つの方法で表すことができる。すなわち、束面が |ψ⟩ と対応する密度演算子 \(\hat{ρ} = |ψ⟩⟨ψ| \) で表現することができる。成分で表すと

\[(c_1, c_2) \in \mathbb{C}^2, \quad |c_1|^2 + |c_2|^2 = 1 \]

\[(s_1, s_2, s_3) \in \mathbb{R}^3, \quad s_1^2 + s_2^2 + s_3^2 = 1 \] \hspace{1cm} (8.72)

である。前者から後者を求めるには式 (8.40) を用いればよい。逆方向が、

\[c_1 = \frac{1}{\sqrt{2} \sqrt{1 - s_3}} s_1 - is_2 \quad c_2 = \frac{1}{\sqrt{2} \sqrt{1 + s_3}} s_1 + is_2 \] \hspace{1cm} (8.73)

となることは容易に確かめられる。ただし、共通位相因子 \(\exp iφ(s_1, s_2) \) だけの
不定性がある。

s は単位球面上の点に対応しているので、2 状態系の像を幾何学的に考察できるので大変便利である。さらに、ハミルトニアン（やトレース 0 のエルミート演算子）も 3 次元空間のベクトルで表すことができる。

極座標 $(\theta, \varphi) (0 \leq \theta \leq \pi, -\pi < \varphi \leq \pi)$ を用いて s の成分を表すこととも可能である。

$$s_1 = \sin \theta \cos \varphi, \quad s_2 = \sin \theta \sin \varphi, \quad s_3 = \cos \theta, \quad (8.74)$$

さらに、(c_1, c_2) を極座標で表すと、

$$c_1 = \cos \frac{\theta}{2} e^{-i \varphi/2}, \quad c_2 = \sin \frac{\theta}{2} e^{i \varphi/2} \quad (8.75)$$

となる。やや、位相因子 $\hat{e}^{\phi(\theta, \varphi)}$ の自由度がある。

とりあえず、位相因子を 1 に固定する。$\varphi = 0$ として、θ を 0 から 2π まで連続的に変化させてみると、状態は $(1,0)$ から $(-1,0)$ に変化する。$\theta = \pi/2$ に固定して、φ を 2π 変化させて場合に状態は符号を変える。

パラメータを 4π 変化させると負号が打ち消し、状態が元に戻る。これを状態の 2 個性あるいはスピノール（spinor）性という。

この状況はメビウスの輪によって幾何学的に表すことができる。輪を一周すると、元の点ではなく、その裏面に達するだけであり、さらに一周することで、元の点に戻るという状況である。

2 個性は共通位相に関するものであり、通常の方法では検出できない。しかし、共通位相を重ね合わせ状態の相対位相に転換する方法があり、実際の測定も行われている。2 個性は 2 状態系が共通して持っている興味深い特徴である。

特に、電子スピンなどの場合には、Ω が磁場ベクトル \mathbf{B} に比例しているために、上記の極座標が現実の 3 次元空間のものに対応している。2 個性はスピン 1/2 を空間で 2π 回転すると符号を変えるという、不思議な効果として立ち現れるのである。なお、整数のスピンに関しては 2 個性は現れない。

8.8 Berry 位相

図 8.4 に示すような、底空間のある点 $\hat{\rho}(0) \in \mathcal{P}$ から出発して、同じ点 $\hat{\rho}(T) = \hat{\rho}(0)$ に戻る運動を考えると、\mathcal{H} においては、$|\psi(T)\rangle = e^{-i\hat{\phi}}|\psi(0)\rangle$ となっているはずである。Berry はこの位相差 ϕ が状態空間の幾何学を反映した興味深い性質をもっていることを見出し、幾何学的位相（geometrical phase, topological phase）と名付けた。Berry の位相とも呼ばれるこの効果は、前述の 2π 回転に伴う符号反転を特別な場合として含んでいる。

ある状態 $|\psi\rangle \in \mathcal{H}$ および対応する密度演算子 $\hat{\rho} = |\psi\rangle\langle\psi| \in \mathcal{P}$ のハミルトニアン \hat{H} による運動を考えよう。一般に、\hat{H} は時間に依存するものとする。

100 第 8 章 パウリ行列と 2 状態系

sp.tex, v. 1.7 (2007/10/16) ©2007, Masao Kitano
まず、Ⅲに座標を導入する。ファイバーを指定するためのⅢ上の座標を

\[s = (s_i), \quad (i = 1, 2, \ldots, 2n - 2) \]

を導入する。また、各ファイバー上の位相を表す座標を \(\phi \) とする。正規化されたクエットだけを考えるので、自由度は \(2n - 1 \) である。座標 \(s \) で指定される底空間 \(\mathcal{P} \) は線形空間ではないことに注意する。

\[|\psi\rangle \leftrightarrow (s, \phi), \quad \hat{\rho} \leftrightarrow s \quad \text{(8.76)} \]

という対応が成り立つ。

\[\hat{P} = \hat{\rho} = |\psi\rangle\langle\psi|, \quad \hat{Q} = |\psi\rangle\langle\psi| \]

とおくと,

\[\hat{H}|\psi\rangle = (\hat{P} + \hat{Q})\hat{H}(\hat{P} + \hat{Q})|\psi\rangle = (\hat{P} + \hat{Q})\hat{H}\hat{P}|\psi\rangle
\]

\[= (\hat{P}\hat{H}\hat{P} + \hat{Q}\hat{H}\hat{P})|\psi\rangle \quad \text{(8.77)} \]

が成り立つので、運動方程式は

\[\frac{i\hbar}{dt}|\psi\rangle = \hat{H}|\psi\rangle = (\hat{H}_d + \hat{H}_g)|\psi\rangle, \]

\[\hat{H}_d = \hat{P}\hat{H}\hat{P}, \quad \hat{H}_g = \hat{Q}\hat{H}\hat{P} \quad \text{(8.78)} \]

と表すことができる。このうち、\(\hat{H}_d \) は \([\hat{H}_d, \hat{\rho}] = 0\) を満たすので、\(\hat{\rho} \) すなわち \(s \) を変化させることはなく、ファイバーに沿って位相だけが変化する運動を表している。そして,
\[
i\hbar \frac{d}{dt} |\psi\rangle = \hat{H}_d |\psi\rangle = \hat{P} \hat{H} \hat{P} |\psi\rangle = \langle \psi | \hat{H} |\psi\rangle |\psi\rangle
\]

(8.79)

の解は \(|\psi(t)\rangle = \exp[-i |\psi \rangle t / \hbar] |\psi(0)\rangle\) なので、ファイバー内の位相の変化は

\[
d\phi_d = -dt \langle \psi | \hat{H} |\psi\rangle / \hbar
\]

(8.80)

と表すことができる。

一方、\(\hat{H}_g\) はファイバーを渡る運動を表す。このことは、\(\hat{\rho}\) に対する運動方程式

\[
i\hbar \frac{d}{dt} \hat{\rho} = [\hat{H}_g, \hat{\rho}] = [\hat{H}_g, \hat{\rho}]
\]

(8.81)

から容易に理解できる。\(\mathbf{s}\) の変化には、\(\hat{H}_d\) の寄与はなく、\(\hat{H}_g\) だけで決まる。各ファイバーには位相座標があらかじめ決められているので、\(\hat{H}_g\) による \(\mathbf{s}\) の微小変化 \(d\mathbf{s} = (s_i)\) に伴う、位相の変化は

\[
d\phi_g = \sum_{i=1}^{2(n-1)} A_i ds_i
\]

(8.82)

と表すことができる。\((\hat{H}_g\)の自由度は \(2(n-1)\) であることに注意する。) これを \(P\) 上の閉じた経路 \(C\) に沿って積分したもの

\[
\phi_g = \oint_C \sum_{i=1}^{2(n-1)} A_i ds_i
\]

(8.83)

が求める位相である。

\(ds = (ds_i), dr = (dr_i)\) によって作られる小さい平行四辺形 (中心が \(\mathbf{s}\)) を周回する場合の位相変化は

\[
d\phi_{g,\text{loop}} = \sum_{i=1}^{2(n-2)} \left[A_i \left(s - \frac{dr_i}{2} \right) ds_i + A_i \left(s + \frac{ds_i}{2} \right) dr_i \right.
\]

\[
- A_i \left(s + \frac{dr_i}{2} \right) ds_i - A_i \left(s - \frac{ds_i}{2} \right) dr_i \right]
\]

\[
= \sum_{i, j} \sum_j \left(\frac{\partial A_i}{\partial s_j} - \frac{\partial A_j}{\partial s_i} \right) ds_i dr_j
\]

(8.84)

閉路 \(C\) が囲む面積 \(S\) を微小な四辺形に分割して、それぞれの位相への寄与を合計することによって

\[
\phi_g = \oint_C \sum_{i, j} \sum_j \left(\frac{\partial A_i}{\partial s_j} - \frac{\partial A_j}{\partial s_i} \right) (dS)_{ij}
\]

(8.85)

が得られる。\((dS)_{ij}\) は \(P\) 上の面要素の \((i, j)\) 成分である。\(2(n-1)\) 次元におけるストークスの定理

\[
f_{dS} \omega = \int_S d\omega
\]

を利用した。
\(\phi_k \) は経路 C のみで決まる値をとる。それを迫る動的過程の詳細には依らない。ことから、幾何学的位相あるいは Berry 位相と呼ばれている。

ファイバーごとの位相座標 \(\phi \) の原点のとりかたを

\[
\phi \rightarrow \phi + A(s) \tag{8.86}
\]
のように変えるとき、

\[
A_i \rightarrow A_i + \frac{\partial A}{\partial s_i} \tag{8.87}
\]
のように変化する。第 2 項は勾配場なので、周回積分を行うとゼロになるので、\(\phi_k \) には影響を与えない。このように位相の原点の取り方を変えることをゲージ変換とよぶ。

\(n = 2 \) の場合を具体的に調べておこう。ブロッホ球面 \(\mathcal{P} \) の座標として、(\(\theta, \varphi \)) をとり、小さい四辺形に沿った幾何学的位相を計算するのであるが、一般性を失うことなく、ある時刻での状態を \(\rho_0 = (\frac{1}{2} + \delta_1/2) \) (赤道上) とすることができる。ゲージで表すと \(|\psi_0\rangle = (\langle 1| + |2\rangle)/\sqrt{2} \) である。\(\text{Tr}(\delta_2 \rho_0) = \text{Tr}(\delta_3 \rho_0) = 0 \) のので、\(\delta_2, \delta_3 \) はいずれも \(\hat{H}_g \) に相当する運動を生成する。そこで、たとえば、

\[
\hat{U} = e^{ib\delta_2/2}e^{ia\delta_3/2}e^{-ib\delta_3/2}e^{-ia\delta_2/2}
\sim \hat{1} + ab[\hat{\delta}_2/2, \hat{\delta}_3/2] = \hat{1} + iab\hat{\delta}_1/2 \tag{8.88}
\]
を考え、状態 \(|\psi_0\rangle \) に作用させると、\(\hat{U}|\psi_0\rangle = (1 + iab/2)|\psi_0\rangle \sim \exp(\pm iab/2)|\psi_0\rangle \) となり、元の状態に戻る。位相が \(\Delta \phi = ab/2 \) だからである。一方、\(ab = \Delta S = \Delta \theta \Delta \varphi \) は赤道近傍では経路で囲まれる小さい 4 辺形の面積になっている。したがって、一般のブロッホ球面上の閉路に対する幾何学位相は、その囲む面積 \(S \) を用いて \(\phi_k = -S/2 \) と与えられる。

例えば、子午線に沿って球面を周回する経路に対しては、半球の面積 2\(\pi \) であるから、\(\phi_k = \pi \) となる。これは前の節で見たスピノーラ性に対応するものである。大円（測地線）に沿って 1 周すると符号が変化し、さらに 1 周すると完全に元に戻るのである。ベリーの位相は大円以外の任意の閉じた経路に対して定義されていることに注意する。

8.9 連続ユニタリ群と交換関係

\(n \) 次元のユニタリ変換全体は群をなす。この群を \(U(n) \) と表す。\(\hat{U}_1, \hat{U}_2 \in U(n) \) に対し \(\hat{U}_1 \hat{U}_2 \in U(n), \hat{U}_1^{-1} \in U(n) \) が成り立つ。単位元は \(\hat{1} \) である。実数としての自由度は \(n^2 \) である。

ユニタリ性から \(\det \hat{U} = \pm 1 \) であるが、特に \(\det \hat{U} = 1 \) のもの、つまり基底の向きを変えないものは \(U(n) \) の部分群をつくる。これを \(SU(n) \) (特殊ユニタリ群) とよぶ。
単位元に十分近いユニタリ変換は

$$\hat{U}_1(e) = \hat{1} - ie \hat{X}_1 \in SU(2) \quad (8.89)$$

と表すことができる{	extsuperscript{3}}. ユニタリ性

$$\hat{1} = [\hat{U}_1(e)]^\dagger \hat{U}_1(e) \sim \hat{1} - ie(\hat{X}_1 - \hat{X}_1^\dagger), \quad (8.90)$$

から、\(\hat{X}_1 = \hat{X}_1^\dagger \), すなわち、\(\hat{X}_1 \) はエルミートでなければならない。

$$d\hat{U}_1/da \bigg|_{a=0} = i\hat{X}_1$$ であることに注意する。ここで、

$$\hat{U}_1(t) = \exp(-it\hat{X}_1), \quad t \in \mathbb{R} \quad (8.91)$$

を定義する。\(\hat{U}_1(t_1)\hat{U}_1(t_2) = \hat{U}_1(t_1 + t_2), \; [\hat{U}_1(t)]^{-1} = \hat{U}_1(-t), \; \hat{1} = \hat{U}_1(0) \)

なので、\(\{\hat{U}_1(t) \mid t \in \mathbb{R}\} \) は群をなす。これを 1 パラメータ部分群とし、\(\hat{X}_1 \) はその生成子 (generator) とよばれる。

時間に依存しない量子系の時間発展は \(\hat{H}/\hbar \) を生成子とする 1 パラメータ部分群で記述される。

\(\hat{X}_1, \hat{X}_2 \) で生成される独立な 2 つの 1 パラメータ部分群を考える。生成子が可換 \([\hat{X}_1, \hat{X}_2] = 0 \) であれば、2 つの部分群の要素の積は \(\exp[-i(t_1\hat{X}_1 + t_2\hat{X}_2)] \)

の形に書き直すことができ、2 のパラメータに依存する部分群をつくることができる。\(\hat{X}_1, \hat{X}_2 \) の実数係数の任意の線形和は 1 パラメータ群の生成子になっていてことに注意する。

\(\hat{X}_1, \hat{X}_2 \) が可換でない場合には、上の形で表せない、\(\{\hat{U}_2(-b)\hat{U}_1(t)\hat{U}_2(b) \mid t \in \mathbb{R}\} \) のような 1 パラメータ群が含まれる。この生成子は

$$\hat{U}_2(-b)\hat{X}_1\hat{U}_2(b) \rightarrow \hat{X}_1 - ib[\hat{X}_1, \hat{X}_2] \quad (|b| \ll 1) \quad (8.92)$$

であり、\(\hat{X}_3 = -i[\hat{X}_1, \hat{X}_2] \) という独立なエルミート演算子を導入する必要がで

てくる。このように生成子の交換関係によって新しい生成子を作り出す操作を繰り返してゆき、\(N \)-個の生成子が得られたとする：

\(\hat{X}_i, \hat{X}_j = \sum_{k=1}^{N} g_{ijk} \hat{X}_k \quad (i, j = 1, 2, \ldots, N) \). 生成子の集まりを元の群に対応するリー環という。線形空間の構造を持ち、交

換子に関して代数的に閉じている。リー環は連続群の単位元の近傍のみならず、

任意の元の近傍の要素を反射している。

この時点で自由度 \(N \) の部分群が得られたことになり、その \(\hat{1} \) に近い要素は

$$\hat{U} = \exp[-i(t_1\hat{X}_1 + t_2\hat{X}_2 + \cdots + t_N\hat{X}_N)] \quad (8.93)$$

と表すことができる。

\(\hat{1} \) に近い 2 つのユニタリ演算子

3 一般に \(\hat{U} = \exp(-ia\hat{X}) \) のとき、演算子の対数関数を用いて \(\hat{X} = ia^{-1}(\log \hat{U}) \) を求めることができる。

104 第 8 章 パウリ行列と 2 状態系
\[U_i = \exp(-i\hat{X}_i) = \hat{1} - i\hat{X}_i - \frac{1}{2}\hat{X}_i^2 + \cdots \quad (i = 1, 2) \quad (8.94) \]

に対して、\(\hat{U}_2^{-1}\hat{U}_1^{-1}\hat{U}_2\hat{U}_1 \) の \(\hat{1} \) からのずれを計算すると、

\[
\hat{U}_2^{-1}\hat{U}_1^{-1}\hat{U}_2\hat{U}_1 \\
\sim \left(\hat{1} + i\hat{X}_2 - \frac{1}{2}\hat{X}_2^2 \right) \left(\hat{1} + i\hat{X}_1 - \frac{1}{2}\hat{X}_1^2 \right) \left(\hat{1} - i\hat{X}_2 - \frac{1}{2}\hat{X}_2^2 \right) \left(\hat{1} - i\hat{X}_1 - \frac{1}{2}\hat{X}_1^2 \right) \\
= \hat{1} + i(\hat{X}_2 + \hat{X}_1 - \hat{X}_2 - \hat{X}_1) - \left(\hat{X}_2\hat{X}_1 - \hat{X}_2^2 - \hat{X}_2\hat{X}_1 - \hat{X}_1\hat{X}_2 - \hat{X}_1^2 + \hat{X}_1\hat{X}_2 \right) \\
- \frac{1}{2}(\hat{X}_2^2 + \hat{X}_1^2 + \hat{X}_2^2 + \hat{X}_1^2) \\
= \hat{1} + [\hat{X}_1, \hat{X}_2] \quad (8.95) \]

となる。

\(\{\hat{\sigma}_1, \hat{\sigma}_2, \hat{\sigma}_3\} \) は SU(2) に対応するリー環 \(\mathfrak{su}(2) \) の基底である。

また、3 次元の実空間における回転は群をつくり、SO(3) とよばれる。\(x \)-軸まわりの回転とその生成子は

\[
\hat{R}_1(\theta_1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_1 & \sin\theta_1 \\ 0 & -\sin\theta_1 & \cos\theta_1 \end{bmatrix}, \quad \hat{J}_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & i \\ 0 & -i & 0 \end{bmatrix} \quad (8.96) \]

である。同様に、\(y \)-軸、\(z \)-軸まわりの回転とそれらの生成子 \(\hat{J}_2, \hat{J}_3 \) を導入すると、\([\hat{J}_1, \hat{J}_j] = i\sum_k \epsilon_{ijk} \hat{J}_k \) であることが確かめられる。このことから、SO(3) は SU(2) と（局所的には）同じ構造を持っていることが分かる。2 状態系がブロッホ球で表される根拠となる事実である。