Additiond Results and open Brothers
(1) The PD complexes considered sotistied try cofionations

$$
\begin{aligned}
s^{n-1} & \rightarrow s^{m} v s^{n-m} v J \rightarrow M \\
J & \rightarrow M \rightarrow Q
\end{aligned}
$$

where $H^{*}(Q) \cong H^{*}\left(S^{m} \times S^{n-m}\right)$.

- all cases have integral chases in the "middle" whomerogy dimensions.

Q: What bant a PDcomples given by a whity cofibration

$$
S^{n-1} \rightarrow M_{n-1} \rightarrow M
$$

where $\tilde{H}_{*}\left(M_{n-1}\right)$ is torsion?

Some cases are known.
(B) If $M$ is a $(2 n-2)$-anneted $\left(\mu_{n-1}\right)$-dimensional PDcomplex with $\hat{H}_{*}\left(M_{M_{n-2}}\right)$ torsion, $n \geqslant 2$

ق hitpy cobibontion

$$
s^{u n-2} \stackrel{f}{\underset{i=1}{t} \underbrace{p^{j n}\left(p_{i}^{5 i}\right)}_{\text {Mrore spone. }} \rightarrow M}
$$

Beben-Wu, Ituang $T$ stowed:

- if eal $p_{i}$ is old then 7 ntpy cofbrotion

$$
\varepsilon A \xrightarrow{f} M \xrightarrow{h} v
$$

whene $H^{*}(V)=\Lambda\left(x_{3 n-1}, y_{2 n}\right)$

$$
V=P^{2 n}(m) \cup e^{4 n-1}
$$

- $V$ is the aologue $f Q$ in the corties case.

$$
-a v \simeq \prod_{i=1}^{m} s^{2 n-1}\left\{p_{i}^{r i}\right\} \times \Omega s^{4 n-1}
$$

where $m=p_{1}^{r i} \cdots p_{\alpha}^{r x}$

$$
\begin{array}{r}
\text { and } s^{2 n-1} 4 p^{r} \cdot=\text { htpy fibre f } \\
\qquad s^{2 n-1}{ }_{f} s^{2 n-1}
\end{array}
$$

- SLh has a sinht itpy inverse bu $\operatorname{Cos} C$

I untey fils antion

$$
\begin{aligned}
& \text { nvixal } M \xrightarrow{h} v \\
& \text { and } \nabla M \simeq \Omega V \times \Omega(\underbrace{\Omega V \alpha \varepsilon A}_{\text {wedge of }}) \text {. } \\
& \text { Moore spoues. }
\end{aligned}
$$

- Moore's Conjecture halds: M is albiptic and has an expanet at every prime.

Renarl : If $M$ is a $(2 n-1)$-conrected
$\left(u_{n}+1\right)$-dirensiond $P D$ complex with $\tilde{H} *\left(M_{n}\right)$ torsion then $I$ anologne of $V$. So a different approach is reeded.
(B) If $M$ is an $(n-1)$-connected $(2 n+1)$-dimensianal PDcomples with $\hat{H}_{*}\left(M_{3 n}\right)$ torsion the 7 hipy cofibortion

$$
\delta^{\prime n} \xrightarrow{+} \bigvee_{i=1}^{+} p^{3 n+1}\left(p_{i}\right) \rightarrow M
$$

- assure pock $p_{i}$ is old
- assume $f$ is a sum of Whitelerl produts and wans thert pirch trivially
to a fixed welge summanal $p^{2 n+1}\left(p_{1}^{r}\right)^{0}$ in $\bigvee_{i=1}^{t} p^{m+1}\left(p_{i}^{r i}\right)$.
"Dota"

Apply Theorem A:

$$
\Omega M=\Omega p^{m n}\left(p_{1}^{r i}\right) \times \Omega\left(s^{3 n+1} v \omega\right)
$$

where $\omega$ is a welge of Moore spoces.
Case (B) ray rot deal with all $(n-1)$-conneited (Inx)-dim PD cumplexes. It does caven the 1-connetel s-dim $P O$ complex.

Open Problens: Fird a Leumposition for all $(n-1)$-connetted $(2 n+1)$-dim PD compleses $M$ with $\tilde{H}_{+}\left(M_{3 n}\right)$ istorsion. (all prinany torsion).

Open Problem: $D=2 ?!$
(2) 2-cones

A z-cone is the hitpy cofilure of a mare

$$
\begin{aligned}
& \varepsilon A \xrightarrow{f} \varepsilon B \text {. ( or } A^{\prime} \stackrel{f}{\square} O_{0}^{\prime} \text { for } \\
& A^{\prime}, B^{\prime} \text { co-H-zpores). }
\end{aligned}
$$

Ex: Consider $\varepsilon x \stackrel{i}{\leftrightarrows}$ Exv乏y - the indurion.

$$
\varepsilon y \stackrel{i_{2}}{\leftrightharpoons} \varepsilon x \vee \varepsilon y
$$

Let $\operatorname{ad}^{k}\left(i, 1 l_{i j}\right)=$ the whiteberd probut

$$
\underbrace{[i, \cdots[i,[i, i s]] \cdots]}_{u \text { copies } f_{i} .}
$$

Define $\pi_{n}$ by the utpy cofibretion

$$
\begin{aligned}
& \varepsilon X^{\wedge \mu} \wedge Y \xrightarrow{a d^{u}(i, 1)(i)} \varepsilon \times v \varepsilon y \rightarrow M_{u} \text {. } \\
& \text { Defive } \gamma_{k} \text { by }
\end{aligned}
$$

were ad ${ }^{\circ}\left(i_{1}\right)\left(i_{2}\right)=i_{2}$

Note 7 estention

By Thm A, 7 htpy fibrotion

$$
V_{i=0}^{u-1} \sum x^{\lambda i} \wedge y \xrightarrow{\gamma_{n}} M_{n} \longrightarrow \varepsilon x
$$

and $\sin \simeq n x \times a\left(\sum_{i=0}^{n-1} \sum x^{n i} \lambda y\right)$.

- if $x, y$ are soleres then

$$
\sin \simeq \Omega q x \times \Omega \omega
$$

where $\omega$ is a wedge of apleus.
$\Rightarrow M_{u}$ is hyperbolic, ro exporent at any prine $p$, and is nod- $p^{r}$ hyperbadic $\forall p V^{\sharp} r \geqslant 1$.

Open Quetton: Fird othen families of spoees sotrstying Roore's Conjeiture and which are mol- $p^{r}$ hyperbolic $\forall p, \forall r z 1$.
(3) Rational Connections

We saw the rational notion $f$ an inert nope Lad a useful integral analogue.

We sum there is an integral approach using decomposition whthads to proving some cases of the Gromov-Vigué-Roirrier conjecture on exponential growth in $H^{*}(h X ; Q)$.

This suggests there are wore corrections.
Open Question: Find wore connections between rational and nom-rotional bite theory.

