Assignment 2

1. Consider a particle of mass m which can move freely along the x-axis anywhere from $x=-\frac{a}{2}$ to $x=+\frac{a}{2}$, but which is strictly prohibited from being found outside this region. This corresponds to what is called an infinite square well potential V(x) given by V(x)=0 for $-\frac{a}{2}< x<+\frac{a}{2}$ and $V(x)=\infty$ elsewhere. If we solve the Schrodinger equation for this V(x), one of the solutions is given by

$$\Psi(x,t) = \begin{cases} A\cos\left(\frac{\pi x}{a}\right)e^{-iEt/\hbar} & -\frac{a}{2} < x < \frac{a}{2} \\ 0 & |x| \ge \frac{a}{2} \end{cases}$$
 $(a > 0)$

- (a) Find A so that the function $\Psi(x, t)$ is properly normalized.
- (b) In the region where the potential V(x) = 0, the Schrödinger equation reduces to

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x,t)=i\hbar\frac{\partial\Psi(x,t)}{\partial t}.$$

Plug $\Psi(x,t) = A \cos\left(\frac{\pi x}{a}\right) e^{-iEt/\hbar}$ into this relation to show $E = \frac{\pi^2 \hbar^2}{2ma^2}$.

- (c) Show that $\langle P \rangle = 0$.
- (d) Evaluate $\langle x^2 \rangle$ for this wavefunction. You will probably need an integral table for this. (Of course, you can always try contour integration or some such. But, that is beyond this course.)
- (e) Evaluate $\langle P^2 \rangle$ for the same wavefunction. You will not need an integral table if you use the fact that the function is normalized. Of course, a brute force computation will yield the same result as well.
- 2. If you are a careful student who pays attention to minute details, you may have realized that *A* can only be determined up to the argument, or up to the sign if you assume *A* is a real number.
 - (a) What is the implication of this fact as to the uniqueness of wavefunction?
 - (b) What is the implication of this fact as to the probability density $\Psi^*(x, t)\Psi(x, t)$? How about $\langle P \rangle$, $\langle P^2 \rangle$, and $\langle x^2 \rangle$?