Masayasu AOTANI Modern Physics Spring 2005

Assignment 1

1. Consider a classical sinusoidal traveling wave given by the equation below; where λ is the wavelength and ν is the frequency so that $\nu \lambda = \nu$ (the speed of its propagation).

$$\Psi(x,t) = \sin 2\pi \left[\frac{x}{\lambda} - vt\right]$$

Please show that

$$\Psi(x,t) = \Psi(x + vt_0, t + t_0),$$

and briefly explain what this means.

- 2. If $\Psi_1(x, t)$ and $\Psi_2(x, t)$ are both solutions of the Schrödinger equation, please show that any linear combination $\alpha \Psi_1(x, t) + \beta \Psi_2(x, t)$ is also a solution; where α and β are scalars.
- 3. Define $e^{i\theta}$ by $e^{i\theta} = \cos \theta + i \sin \theta$ and please prove the following relationships.

(a)
$$e^{i\theta}e^{i\phi} = e^{i(\theta+\phi)}$$

(b)
$$\left(e^{i\theta}\right)^n = e^{in\theta}$$