Assignment 1

1. Consider a classical sinusoidal traveling wave given by the equation below; where λ is the wavelength and v is the frequency so that $v \lambda=v$ (the speed of its propagation).

$$
\Psi(x, t)=\sin 2 \pi\left[\frac{x}{\lambda}-v t\right]
$$

Please show that

$$
\Psi(x, t)=\Psi\left(x+v t_{0}, t+t_{0}\right),
$$

and briefly explain what this means.
2. If $\Psi_{1}(x, t)$ and $\Psi_{2}(x, t)$ are both solutions of the Schrödinger equation, please show that any linear combination $\alpha \Psi_{1}(x, t)+\beta \Psi_{2}(x, t)$ is also a solution; where α and β are scalars.
3. Define $e^{i \theta}$ by $e^{i \theta}=\cos \theta+i \sin \theta$ and please prove the following relationships.
(a) $e^{i \theta} e^{i \phi}=e^{i(\theta+\phi)}$
(b) $\left(e^{i \theta}\right)^{n}=e^{i n \theta}$

