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Chapter 5

The Hydrogen Atom

So far
1. TDSE (the Time-Dependent Schrodinger Equation)

0¥ (x,1)
ot

2 42
[—;—m% + V(x, t)] Y(x, 1) =ih

2. TISE (the Time-Independent Schrédinger Equation)

n d
[__— + V(x)] W(x) = Ey(x)

2m dx?

3. The Relation between ¥ and ¢

P(x, 1) = (e

Terminology

Y(x) is an eigenfunction.
E is an eigenvalue.

Here is a more familiar example.
0 211 _|2|_ ) 1
0 2(|11] (2| “[1
1. . 0 2| . .
[1] is an eigenvector for [ ] with an eigenvalue 2.

0 2
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36 CHAPTER 5. THE HYDROGEN ATOM

We have not really tried any real system yet. But, we need to carry out a real
computation for a real system for an experimental confirmation of the correctness
of the Schrédinger Equation

One of the simplest systems is a hydrogen atom.

However, this poses a couple of difficulties since (1) two particles are involved
now and also since (2) it is no longer one-dimensional, but three-dimensional.

(1) 2 partilces instead of 1
Let M be the mass of the nucleus and m the mass of the electron. The nucleus and
the electron are moving about their fixed center of mass. But, introduction of the

reduced mass u given by
Mm

M+m
solves this problem. In particular, for a hydrogen atom,

(o)
= m=m
H m+M

ﬂ:

and we can simply use m instead of u.

(2) Three-dimensional
The classical energy equation is
2
L iy=E
2u

or
1
Z (pﬁ +p§ + p?) + V(x,y,z) = E.

We want to transform this into a three-dimensional Schrodinger Equation.
Our solution, the wavefunction, now depends on four variables x, y, z, and ¢.

Y(x,t) = Y(x,y,z,1)

Here are the operator correspondences we are going to use.

0 0 0 0
pr &= —ih— p, &= -ihi— p, & -ihi— E i

ox oy 0z ot
Of course, this means we have the following.
i i i
2 2 2 2 2 2
= N — = —h —_— = N —
Px o2 D dy? P 0z%
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Therefore,

pz_p§+p§+p§_1[ & ( 62)+(h262)]_—h2(02 & 02)

W + |0+ |- = —+t—+—].
Ox? oy? 07> 2u \ox*  dy* 07

2u 2u T 2u

On the other hand, the potential energy is now a function of x, y, and z as below.

dreg X* +y? + 22

We now have the following Time-Independent Schrodinger Equation in three
domensions.
- ( i SR o

— t—+ = |¥Yxyz0)+Vxy ¥y z,1) =ik
2u \ox2  0y? 312) (x,y,2,1) (x,y,0)¥Y(x,y,z,t) =i

V=Vxyz2) =

M (x,y,z,0)
ot

Let us introduce a Laplacian operator or “del squared” V* defined by

I
S ox Ay 0

This simplifies the equation to the following form.

—h oY
— V¥ + V¥ = ifi—;
2u ot
where
V=Vyz and V¥=YXxyz0).
Now let

W(x, 2,0 Y, y, 20
Then, we get the Time-Independent Schrédinger Equation.

—hK?
szw(xs Ys Z) + V(X, Ys Z)w(xs Ys Z) = Ew(xs Ys Z)

As it turned out, it is easier to solve this equation in spherical (polar) coordinates,
where (x, y, z) are replaced by (7, 6, ¢).
Note that in pure math books 6 and ¢ are usually switched.
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Since a hydrogen atom possesses spherical symmetry, this is a better coordinate
system.

Right away, V(x, y, z) simplifies as follows.

_e? _2

_ —e
dneg 2 +y2+ 2 4meor

In fact, the potential energy only depends on the distance from the origin.

V(x,y,2) = =V(r,0,p)

2

dregr

V(r,0,¢) = = V(r)

Of course,
w(x,y,2) = Y(r,0,9).
62

This means that we have to convert V2 = 06_;2 + (;1—22 + 7 to another equivalent
operator expressed as derivatives with respect to r, 6, and ¢.

Then, we will have

—h2
szw, 0,¢) + V(r(r,0,¢) = Ey(r,0,).

The answer is

Vz—li rzﬁ + ! ﬁ sin9i + ! 6—2
T r2or\ or]  r2sin6oo 09]  r2sin290¢’

and we can see that V2 appears far more complicated in the spherical coordinates.

How is it done? We begin with the three relations between (x, y, z) and (7, 6, ¢).

X = rsinfcosgp
y = rsinfsing
z = rcosf

We can see how % etc. can be converted. What we should do is to keep using
chain rules and relations like % = sinfcos ¢. But, the actual operation is quite
tedious.
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Let us prove a part of this conversion.

Consider a one-variable function y(r) for r = /x> + y* + Z2.

Since
Btﬁ Br(‘)tﬁ X (")_w_)_c@_l//
Ox  dxor 1/x2+y2+Z26r_r0r
and 3 |
or _ (o, 2 2y, X
Bx_Z(x +y +z) 2 =
we have
62_¢/ xagl/ ﬁ B 16_1// _% 16_1//_'_ 0 161// 18;[/_'_ or 0 1a¢/
6x2_6x ror ox ror) ox\ror ox\r or _rar oxor\r or
161//+x 1a¢/ 1a¢/ 1a¢/
r or rar ror _rar rar ror
Similarly,
Qﬁg 16¢' 1oy
0y? rar rar ror
and
Fu_1ow 20 (100
Ozz_r(?r r6r ror)]’
Therefore,
V2¢’ 301// X+y+z2 0 101// 36w+ 101// é@_tﬁ_'_r _l@_w 1621//
r0r r or\ror _r6r or\ror _r6r 2or  ror

S ror ot r2or\ or
In order to get other parts, try ¥ = (@) and ¥ = ¥(0).

2w+¥¢_ia(aﬂ

In preparation for the rest of the course as well as your career as a physicist or just
as someone who needs to understand and use physics, please do get used to the
spherical coordinates. For example, the volume element

dxdydz

becomes
r*drsin0déde  or  —r*drd(cos0)de
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in spherical coordinates.

Let us pause for a minute here, take a deep breath, and summarize what we have
achieved so far to clearly understand where we are now. (as well as, “hopefully”,
where we are heading)

1. Due to the spherical symmetry inherent in the hydrogen atom, we made a
decision to use the spherical coordinates as opposed to the familiar Carte-
sian coordinates. In particular, this simplifies the expression for the poten-
tial energy greatly. It is now a function only of the radial distance between
the electron and the proton nucleus.

—Ze?
dregr

V(x,y,z) = V(r) =

2. However, a rather heavy trade-off was the conversion of V? to the equivalent
expression in the spherical coordinates. The conversion process is cumber-
some, and the resulting expression is far less palatable.

Vz—li rzﬁ + ! ﬁ sin@i +—1 6—2
Cr2or\ 0r]  r’sinfdo 00)  r2sin® 6 0p?

We are now ready to solve the Time-Independent Schrédinger Equation in spher-
ical coordinates given by

—h?
szlﬁ(”, 9’ SD) + V(r)l//(r’ 9’ ()0) = Elﬁ(”, 9’ SD)

We will resort to the separation of variables technique yet one more time. So, con-
sider  as a product of three single variable functions of r, 8, and ¢ respectively.

Y(r,0,¢) = R(rNOO)D(¢)

Then, the Time-Independent Schrodinger Equation is

[__hzw

G V(F)] R(rOO)D(p) = ER(r)OO)D(¢).

Let us write it out in its full glory and start computing!

h [iﬁ(rza<R®q’))+ L 9 (sinGa(RGq)))+ L_TROD) yimrree o)

ﬂ 2 0r or 72 5in 0 00 00 r2sin’ @ O0g?
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= ER(n)BO(0)2(p)

_ %2 1 R 1 1 2(1)
L9 (20Rg0) 9 (5in622 ko) + 22 po|+vrre®
72 5in 0 00 06 2 sin” § 0¢?

3120 20 1
- @@lﬁ( 6R)+ ! R@ﬁ(m 90—®)+ I red? +V(r)ROD

2u rror\ or r’sin 00 00 r2sin?@  0¢? |
—h | 1d dR 1 d d® 1 d*0 |
= — 00— |rP—|+ R®— |sin §— RO +V(r)ROD
2 | Pdr (r dr) 2sing - de (Sl d9) e Dag [TV
= ER(r)®(0)D(p)
Now, multiply through by
—2u
Sl r* sin’ 9R®(D

B2, o | Ld (LdR\ 1 od(. dO\ 1 . d0
e 0— | 00— — RO~ (sin 0=~ RO
e 2o\ ar)t s ae MM a0 )t et dg?

-2u , 1 -2u , 1
+V(F)R®CDFI’ Sln 91?(9—(1) = FROO - Fr Sln 91?(9—(1)

-2
——r?sin*ov(r) = —'ur251n20E

@ a0\"" 2

sin 6 d dR sinf d ,gd_G) +ld2 ~2u
R dr dr do] ®de* n

L&D sin®0d ( ,dR) sin0d d®\ 2u
® d0\"

2
120 E-
— 24 R ar\" ar @) S OLE -Vl

The LHS (lefthand side) is a function of ¢, and the RHS (righthand side) is a
function of r and 6. And the equality holds for all values of r, 8, and ¢. Therefore,
both sides have to equal a constant. For later convenience, we denote this by —m;.

So, we have
1 d*® o,
dg? ~
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or
d*®
d_(’pz = —m,2CD

But, this also means

sin® 6 d a’R sinfd (. d®\ 2u,
© db

_ .2
R dr a’r ) —ﬁr sin®0[E — V(r)] = m;

Dividing through by sin” 6,

l1d|{(,dR 1 d(. d®\ 2u, ml2
L 2 {sine== | - 2 (E - vl = -
Rdr( dr) ©sin 0 do (Sm de) e B Vl= -0y
1d(,dR\ 2u 2 m,2 1 d doe
— E- V()] = 0=
Rdr (r a’r) el V= o Genaas " a0

The LHS depends on r, and the RHS is a function of 8. Since the equality holds
for any values of r and 6, both sides have to be a constant. Denote that constant
by I(l + 1) to get

-1 d de\ me
(1n9—)+ =11+ 1)®

sin 0 do do sin’ 0
and
1 d{,dR\ 2u
—_— E — R = H—
rzdr(’” d) 25 [E= VIR =10+ )

We have now reduced the problem to that of solving the following three equations
each in one variable.

d*®
d_gpz = —m,CD (51)
-1 d de\ m;0
———|sinf— = [(l+1)® 52
sin 0 do (Sm d9) szg U -2)
1 d(,dR\ 2u R
ﬁ%(r P ) SE-VDIR = I+ 1)r_2 (5.3)
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5.1 The Solutions for ©

The easiest to solve is equation 5.1.

d*®

ap =T
So,

D(p) = .

Consider single-valuedness.
D(0) = P27) = ™0 = ™ = | = ™" = cos(m;2n) + i sin(m;2n)
Now, let m; = a + bi for (a,b € R).

|1| — |eim127r| — |ei(a+bi)27r| — eia27r

|e—b27r|

|€—b27r -b2m _ 1

= e

2nb=0=>b=0
It is now obvious that m; is a real number and
m|=0,1,2,3,4,.......
For each value of my, there is a corresponding solution
D,,(p) = ™.

The numbers m; are known as quantum numbers.

Now we need to solve equations 5.2 and 5.3.

5.2 The Solutions for ®

Equation 5.2 is known as the angular equation.

1 d 20
———(sine—)+m’ = I+ 1)®

sin 0 do sin® @

Note that
dcos 8 = —sin 6d6.
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So,
-1d d
sinfdl  dcosf’
and 4 4
smeﬁ = sm@dcqsg = —sin Qm = —(1 —cos Q)dcose

—sin@

This suggests that 5.2 can be simplified if we let z = cos 8. Since,

2

d 40 ®
~(1 - cos* ) B _a+ e,
cosd 1

dcosf

—cos? 0

we have

d de\ me
— ( (l—z)—) S =+ 10

)
= diz((l - z%%) + (l(l+ 1) - : _lzz)@) =0
At the time Schrodinger was solving his equation for the hydrogen atom, this
was already a well-known differential equation, and the solutions are called the
associated Legendre functions denoted ®,(z). This is related to a better known
set of functions called the Legendre polynomials denoted P;(z). The fact is the
relation is as follows.

. dmi Pi(2)
®lm[(Z) — (1 _ Z2)| I‘/zw
Our first job is to prove this.
Now P,(z) is a solution to
d*P dP
(1- )—’—2d—’ I(l+ 1P, =0
Differentiate both sides with respect to z to obtain
d’pP, d? P, dP, d*P, dP,
-2 — = 2— = 2z—+ I+ 1)—
“az +(1- ) Az az +ii+ D dz
d*P, d2P dP,
=(- 2——4—+ Il+1)-2)—]=0
(=) — 4 ((( ) )dz)
Try d% again.
d*P d*pP d*pP ae, _d*p, _d*P d*pP d*p
i, lkl, P, Yol § W e, L, S B, Yy [ D— R

dz? dz3 dz3 dz* dz? dz? dz?
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d*P d’p d*P
—(l—z)—l—6zd—gl+(l(l -6 ’:o
Suppose we get
dk+2 k+1 dk
(l—z)a,k2 —2(k+1)z +(l(l+1)—k(k+1))—P, 0

after differentiating k times.
Now apply <~ one more time.

dk+2Pl k+3 k+1 k+2 k+1

2
22 (=) 2 D 2 D U D=k 1)

d(k+1)+2 (k+2)+1 dk+1

2(k+1)+1)z +(l(l+1) (k+1)((k+1)+1)

L=0

= (=) s P

So, by mathematical induction,

k+2 k+1 dkPl
(1 _Zz)dzmpl = 20k + Dz~ L+ (U + 1) = (ke + 1))— =

when we apply ;—Zkk.
On the other hand, consider

®lml — (1 _ ZZ)imI|/2l—*(Z)

and substitute this into

d ».d® mo\
d—z((l—z)d—z)+(l(l+l)— 1—z2)®_0'

We have the following lengthy computation.

2

i _2i N7 _ k N7
a’z((l Z)dz(l 7°) F)+(l(l+l) l—zz)(l )T

2

(1 = 2)°1) + (l(l +1)—- k )(1 _ AT
1-22

-2 - 2L
dz dz?

= -2z E(l _ ZZ)(k/Z—l)(_zz)l—* + (1 _ ZZ)k/Zd_r
2 dz
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2

d (k dr’
1= — [ Z(1 = 2Y*2=D(_2 [ + (1 = 22)2 I+ 1) —
+( Z)dz(z( ) (29I'+ (1 -2°) dz+(+) -

) (1 _ZZ)k/ZF

_ Z2)1(/2_

dr
= -2z (kz(l - A%EOTr 4 (1 )
dz

k k
+(1-2%) [E(k/z = (1 = H)**D(=27)(-22)T + S - A =2)r
k dr & dr d°T
201 = A)k2-D_n 201 = A)k2-D_n 1 = A2
(=) z)—a,Z + (=) Z)_dZ +(1=27) —dzzl
2

1-272

+ (l(l +1) - )(1 - 2T

— 2kZ2(1 _ ZZ)(/(/Z—l)l—* _ 2Z(1 _ Z2)k/2§
4

k
+(1 -2 [2kz2 (5 - 1) (1= HH*Ir — k(1 - 2T

dr

dar dar
k(] — AV o — k-0 E L 22
Z( 7°) dz Z( 7)) dz ( z%) dz?

2
+(l(l+1)— 1k 5
-z

)“—£W%=o

Multiplying through by (1 — z?)7%/2,
2kz? dr’
I'-2z—
1-272 Za’z
k dr’ dlL  d*T
1-29) [2k* | = = 1|1 =2 T —k(1 =2 ' T —kz(1 =)' — —kz(1 = 29— + —
+( z)[ z(2 )( Z%) (1-29 (1 —z%) e (1 =z2%) i
k2
[(l+1)- r
+(( +1) 1—z2)
2kz? ar [k . dr'  dr ,.d’T 2
= I=2z—+2k2* | = — 1| (1=22) ' T=kT—kz— —kz—+(1-) —+[ I + 1) - r
-2 4z Z(Z )( ) Yz Zdz( Z)a'z2 ¢+1) 1 - 22
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d’T dr 2k + 2k? (4 = 1) - I
_ 2
= (1=D) 5+ (2ke =20+ I+ D+ = —k|T
d’T dr 22 _ 2
_ 2
= (1 =) = 2k + D+ 10+ 1)+ —k]r

d°T dr
— 2 2 —
= (1 =)= = 20k + e +|i+ 1=K - kT =0.

So, we have shown

2
(1- f)d—f o0k 12 0+ 1)~ kG DIT = 0
dz dz

or
d*T dar

(1- Zz)— =2(lmyl + DNz— + [IL+ 1) — |my| (Jmy| + D]T = 0.
dz? dz

Comparing this with

k+2 k+1

I d%Iﬁ
P -2k+ 1)z——+ {(+ 1) — k(k + 1))W =0,
Z

2
(1-2% dz*+2 dzk+1

we conclude -
dm™p
_ N Ve A
®lm1 B (1 ¢ ) dz|m1| ’
It remains to solve

d*P, dP,
- — - 22— +Il(l+ )P, =0
( z)a,Zz zdz+(+)z

for P,.

Try

e8]

Pi(z) = Z aiz.

k=0
We get a recursion relation as before.

b=+
GGGy

Also as before, we do not want an infinite series; that is, we want the series to
terminate after a finite number of terms. So, [ = 0,1,2,3,... give acceptable
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solutions.
We get
PO = 1,P1 =Z,P2 =1 —322,P3 =3Z—5Z3,....

So, the corresponding ©,, s are

Op =1, Op=2z 0O = (1—Z2)1/2, Oy = 1—322, Oys1 = (1—Z2)1/2Z, BOosr = 1—Z2,
and so on, and the like.

Note that P,(z) is an /th degree polynomial. Therefore, for each [, we have

m=-l, -l+1, ..., 0, ..., [-1, L

We now have ® and O.

5.3 The Radial Function R

The general radial equation for a one-eletron atom is

1 d(,dR\ 2u Ze? R
——|r'—|+=|E+ R=Il+1)=.
r2dr (r dr) h? [ 47'(80}’] ( )r2

We will only solve this for Z = 1 or for a hydrogen atom.

Let us first invoke some substitutions to put it in a more manageable, after the fact
it is, form.

2uE
pF=1= >0

p =2pr

__ue
r= dneoh?

With this substitution, we get

1 R 1 1
LA P PR SRS A P
prdp\" dp 4 P p
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Asp —
R(p) ~ e,

So, write
R(p) = e*F(p),

and substitute this into the radial equation to get

P (2 F o [y-1 1
d (——1)d +[7 —l(”z )]F:O.
0

—_ + R
dp* \p dp P
Once again, we will try a series solution with

Fip)=p' Y ap" (ag#0, 520);
k=0

where the conditions on a and s are in place to prevent F' from blowing up at the
origin.

After substituting this sum into the differential equation, we get

s(s+1)—=Il[+1)=0 and
_ s+j+1-y
Aj+l = D)) 4

The first equality gives s = [ and s = —(/ + 1). But, s = —(/ + 1) should be rejected
as s > 0.

The second equality

jHi+1-vy
a; = a;
s GHI+DG+I+2)—1d+1)"

indicates that
vy=j+[+1=n (Call this n.)

assures termination of the series after a finite number of terms. Hence,
n=I0l+1,1+2,1+3,---

as j goes from 0 to co with [ =0,1,2,3,....
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Now recall LE
2 4
=
and ,
Y= 4nl;0h2ﬂ'
I
n
So,
4
ue
E,=- YY) =1,2,3,---.
(4riey)222n? "

Putting it all together, we get

Rnl(r)®lm1(9)q)mz(50) = lPnlml(r, 0, 90);

where
(Dm[(‘p) :elml‘/’ |m1| :0’1,2,3,”' >
and
2
r r
Ry(r) = 7" (—) Gu (—) .
a() ao
Here,
dreoh?
ap = )
ue
Fp

is a polynomial in cos 6, and

r
o)
ao

is a polynomial in 7/ay.

Recall that we have
|ml| = O’ ]"2’3’... 2

l=|ml|,|ml|+1,"' ,lml|+3,"' »

and
n=I1+1,1+2,1+3,---.
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This can be reorganized as follows.

n=1,234,

[=0,1,2,---,n—1

my=—l—l+1,---,0,-- ,+

The first number # is associated with R(r) and is called the principal quantum
number. The second number / is associated with ®(6) and is called the orbital
quantum number. Finally, the number m; is called the magnetic quantum number
which is asoociated with ®(¢p). In addition to these, we also have a spin quantum
number m,, which we have no time to discuss.
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About The Final Examination

1. 07/04/2005, 10:30 — 12:00

2. Open lecture notes, open homework (no copies): I will check these in the
first 10 minutes.

3. Can’t use a calculator, but will never need it.
4. Examples of topics to be covered

(a) The Step Potential
(b) The Infinite Square Well
(c¢) The Simple Harmonic Oscillator

(d) The Hydrogen Atom: You don’t have to solve any differential equa-
tion.

(e) Series Solutions
5. You should know the following.

(a) Know how to use continuity conditions.
(b) Know how to interpret ‘.

(¢) Know how to compute expectation values.

6. Show all your work. Include the intermediate steps.





