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Chapter 4

Solutions of Time-Independent
Schrodinger Equations

4.1 The Zero Potential

This is the case where V(x) = 0 for all x.

Our Time-Independent Schrodinger Equation is

~1* d*Y(x)
2m dx® Ey().

The most general solution for this second order linear ordinary differential equa-
tion is of the form

V2mE . .
W(x) = A, sin 7;" x = CLe 4+ Cye

X+ A, cos

2mE
Pt

where A, A,, Cy, and C; are arbitrary constants, and k =

On the other hand, we always have

B(1) = e B = gl (h/20) _ =2t _ i
for time dependence.

Therefore, the full time-dependent wavefunction is

‘I’( X, t) — l//( x) ¢(t) — (C1 eikx +C, e—ikx) e—iwl =C ei(kx—wl) +C, e—i(kx+wl)-
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20CHAPTER 4. SOLUTIONS OF TIME-INDEPENDENT SCHRODINGER EQUATIONS

Let us take
Y(x,1) = C; ei(kx—wl) (: C, eikx e—iEl/h).

Then,

(&) [ee]

— +00 +00 o 9 ' '
P = <P> = f Y PY¥dx = f C.«ice—zkxetEl/h(_l-h)a_Clethe—tEl/hdx
- - X

+00

+00
— f Cfe_ikxeiE’/h(—ih)(ik)C]_eikxe_iE’/hdx — (f

e8] —00

+00
‘I’*‘de) = hk f Urpdx

h 2mE
=hk=— -—— = V2mE.
ik 2 h m

This makes sense as )

P
—=FE = P=V2mE

2m
classically.

The computation above serves as yet another consistency checking device.

4.2 The Step Potential (£ < V)

We now consider a step potential given by

Vo x>0
V(X):{ 00 x<0

for £ < V.

In Newtonian (classical) mechnics, the particle can not enter the region (0, co).
We have

E=KE.+PE.=K.E.+V,in(0,00) = K.E. = E -V, <0.

This does not make any sense of any kind classically. Is this also the case in
quantum mechanics? Let us just plunge in and solve it!

The time-independent Schrodinger Equation is

n d*y(x)
2m dx?

+ V(y(x) = Ey(x).
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In our case, we have the following.

-1 dPy(x)

2m  dx?
— Y (x)
e Y

21
Ey(x) x<0 (4.1)
Ey(x) x>0 (4.2)

Equation 4.1 is that for a free particle. Therefore, the general solution is

Y(x) = Ae™* + Be ™%, where k; =

————, and A and B are arbitrary constants.

On the other hand, equation 4.2 can be rewritten as follows.

—1? d*y(x) 1? d*y(x)
- = (E-V, — —

2m  dx? ( W) 2m  dx?
The general solution for x > 0 is

Y(x) = Ce™*+De™™*; where k, =

Note that V) — E is positive in this region.

d*y(x) _ 2m(E — V)

= (Vo-EW() = — —

2m(V0 - E)

,and C and D are arbitrary constants.

As stated above, these are indeed the solution, or the (most) general solution, since
we have a linear second order ordinary differential equations.

We have
W(x) = Ae™1* + Bemix
W(x) = Cel* + De™o*

Recall the conditions on (i, d—f).
1. Finite
2. Single-valued

3. Continuous

(k _ V2mE)
1= "
(ky = 2By x>0

x<0

Y(x)
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We will determine A, B, C, and D using these conditions.

Let us begin with the region x > 0. In this region,

v2m(V0 - E)

W(x) = Ce* + De™*; where k, = -

Therefore,
U (x) = (C*ekzx + D*e_kzx) (Cekzx + De‘kzx)
2ReC* D
= |CPe?* + D'C + C'D +De ",
Since the wavefunction has to be normalizable, it has to satisfy the finiteness con-
dition

f (O (x)dx = f ly(x)|Pdx < oo.

[e6]

Noting that this i is the wavefuntion only in the region x > 0, we actually need

f ) lW(x)*dx < co.
0

Hence, we have to have
C=0.

At this point, we have

Y(x) = Ae + Bemhix fy = YE - <
Y(x) = De™* (k= XDy x5

Next, we will use the continuity condition on ¢(x) and )

dax
Continuity of ¢/(x) at x = 0 gives
De ™0 = Ae"? + Be™? = D=A+B.

Since the first derivative is

dx
BD = D(-ky)e™r (k= YD)y x>0’

{ WO = Aiky)et™ + B(=ike ™ k= 2E <0
dx
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continuity of % at x = 0 gives

23

. . —k
—kyDe™*° = ik Ae® 0 — ik, Be ™ = —k,D = ik (A - B) = 721) =A-B.
K]

We now have a simultaneous equation

D A+ B

{”‘—2D = A-B
k1

for A, B, and D with the solution

A
B

(ST ST

1+%)D
1-%£)p-

This gives

() ={ 801+ ika ke + B(1 — hofk)e ™ k<0
De™2% x>0

So, the full solution is

Y(x, 1) = y(0)P(t) = Y(x)e E"

B g(l + iky /Ky e x—EU 4 g(l — iky [k )e T REHEUD) - x < Q)
a De X g iEl/n x>0 °
Recall that
pmiEll _ pmivl

This is because 5
Et/hi=hvt/h = hvt/(z—) = 2nvt = wt.
T

Therefore, in the region x < 0,

Y(x,t) = Aei(/qx—a)!) + Bei(_klx_“”)_
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Note that

Agitkir—wn
is traveling to the right while

Bei(—kl xX—wl)
is traveling to the left.
In other words,

Apitkir—wn

is the incident wave, incident on the step form the left, while

Bei(—kl xX—wt)
is the wave reflected by the step.

What is the reflection coeflicient? Since the reflection coefficient is the ratio of the
amplitude of the reflected wave and the amplitude of the indident wave, we have

the amplitude of the reflected wave
the amplitude of the incident wave

(1= 2(1-2)
()8

the reflection coeflicient =

_ |Bei(—k1x—wl)|2 B |B|2|ei(—k1x—w!)|2 ~ |B|2 _ BB
- |Aeithix-wn|2 - A2 [eitkix-wn]2 - W T AA

_(i+ig)(1-ig)
(=i)(reip)

And, we have a total reflection.

D"
_ 2
D
2

=1

Indeed, we have a standing wave in the region x < 0. To see this, plug ¥ =
cos k;x + i sin k; x into

() = { 2 [(1+ ika k)™ + (1 = iko/h)e ™| x <0

De ko x>0
to obtain
W(x) = Dcosk x — D% sinkix x<0
B De ke x>0
So, for x < 0,

k .
Y(x,t) =D (cos kix — k_2 sinklx) e ElM
1
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Remember the following from high school math,

a cos kx—Bsinkx = 2 coskx- _B sinkx | Va? + % = cos(kx+0);
Ny Ny
where 0 is such that
cos9=Land sin@ = P

Therefore, the nodes do not move, and we indeed have a standing wave.

Now, in the region x > 0,
¥ (x, )P (x, t) = D*De 2"

While
lim Y*Y = 0,

X—00

Y'Y +£0

for Vx > 0. This means that the probability of finding the particle to the right of
the step is not zero even if the total energy E is smaller than the step height Vj,.
This phenomenon is definitely nonclassical and is known as “barrier penetration”.

4.3 The Step Potential (£ > V)

We will now consider the case where the total enrgy E is greater than the step
height.

Classically, we have the following.
1. Not a total reflection
2. Has to be a total penetration into (0, co)

But, quantum mechanically, the Schrodinger Equation predicts the following.
1. Not a total reflection (agreement with the classical theory)

2. Has to be a total penetration into (0, co) (disagreement)
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Let us see how it works.

As usual, ¥(x, 1) = ¢(x)e /", and the Time-Independent Schrédinger Equation
is

2m g2
LD = (E-Vow(x) x>0

2m  dx?

{:ﬁ@&l: Ey(x) x<0

Since E — V > 0 this time, the two equations are basically the same. They are
both free particles, and the solutions are

_ [ AeM 4+ BeTMr x <0
v(x) = Ce*¥ + De7*k* x>0

where k; = _Vzh””l and k, = \/@ -

Suppose the particle is in the region x < 0 or (—o0,0) at r = 0. In other words,
the particle is incident on the step from the left. Then, since the wave is travelling
to the right in the region (0, o), we should set D = 0. This is simply because
e hxe=iElM g 3 wave travelling to the left.

Imposing the continuity condition on ¢ and ‘;—f at x = 0, we can express the
constants B and C in terms of A as follows.

ay(x) = W k(A - B)

dx lx=0- — dx lx=0+

Y. = W()]s A+B c B = AR
{ = LCe crzlgﬁz

Therefoere,
Aeiklx + Akl—kz e—iqu

‘ﬁ(x) = { Aieikzxkl-kkz

ki+ko
The reflection coefficient R is given by

BB _(ki-k\
_A*A_ k1+k2 '

Since the transmission coefficient 7" isrelated toRviaR+ 71 =1,

kl - k2 )2 _ (kl + k2 + kl - kz)(kl + k2 - kl + kz) _ 4k1k2

T=1-R=1- - .
(kl +ky (ki + ky)? (ki + ky)?

As advertised, we do not have a total reflection, and we do not have a total pene-
tration into (0, o), either.
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We now solve the same problem for a wave incident on the potential boundary at
x = 0 from the right. In other words, the particle is in the region (0, o) att = 0
and traveling to the left.

Our general solution is

_ [ AetMr 4 BeThT x <0
W(x) = Ce** + De7®* x>0 °

where k; = _V2h’”b and k, = \/@ _

Since there is no boundary to reflect the wave in the region (—o0,0), the wave
should be travelling to the left in this region. We set A = 0.

Be ®*  x <0
l//(X) = { Ceikzx + De—ikzx x> 0

The first derivative with respect to x is

(x) = —ikjBe ™x  x <0
VO = ik Celor + (—ikpDe = x>0 -

Imposing the continuity condition on (x) and % at x = 0, we get

{ B = C+D {C+D = B {c = &hp

—ik,B ik,(C — D) C-D = —%B D = %B '

What are the reflection coefficient and the transmission coefficient in this case?

PSS LT,

and
T—1-R= Ak ky
B  (ky + ko)?

Note that these are the same as before when we computed R and 7 for the particle
moving in from the left.

Incidentally, B # 0 can be proved on purely mathematical gorunds as follows.
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If B =0,
At x <0 A = C
"’(x)‘{ Cet* x>0 {klA = kC

But, it is obvious that this can not be solved for A and C unless we accept A =
C = 0 which is physically meaningless. Hence, B # 0 on this ground.

4.4 The Barrier Potential (£ < V)

The potential V(x) is Vj in the region (0, a) and O elsewhere.

Vo 0O<x<a
V(x)_{O x<0,a<x

Our Time-Independent Schrédinger Equation is

Fe™®* 4+ Geé* 0O<x<a ;

Aer 4 Bemkix x<0
Y(x) = _ .
Ceé*x  + Def*¥  x>q

where k; = _Vzhf'ﬂf and k, = @ '

Assuming x <Qatr=0,D =0.
On the other hand, our boundary conditions are

w(x)|x:0— = l//(x)lx:0+
V() oge = YO icus
dy(x) - W .
o 07 bt [
dx X=a— - dx x=a+

We have the above four equations and the five unknowns A, B, C, F, and G. But,
we also have a normalization condition. So, we can solve for the five unknowns.

As it turned out, C # 0, and the probability density W*(x, 1)¥*(x, 1) = " (x)y¥(x)
has a (nonzero) tail in the region x > a. Of course, it is nonzero also inside the
barrier.

Therefore, we have both barrier penetration and tunneling.

4.5 The Infinite Square Well Potential

The potential is given by

x| <

V() ={ 05 |x| >

NI NI
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and we get, as we have already seen,

v ={ §air ;

Asinkx + Bcoskx x| < §

. As usual, the full wavefunction is

where k = —VzhmE

P(x, 1) = Y(x)e .

It turned out the continuity condition of the first derivative is too restrictive for
this system as the potential blows up to co unlike any known physical system.
The continuity condition on (x) at |x| = § gives

Asin’% + Bcos’% =0 N 2Bcos’%
—Asin® + Bcosd = 0 2Asin"7"

0 {A=O and cos’%z
— —
2 2

0 B=0 and sin%“zO

Therefore,

¥(x) = Becoskx where cos =0
or
Y(x) = Asinkx where sin =0

We have two families of solutions.

Yn(x) = B,cosk,x where k,="T n=1,3.5,...
Yu(x) = A,sink,x where k, =" n=2,4,6,... °

Note that n is a positive integer in both cases. This is becasue negative n’s give
redundant solutions and n = 0 gives a physically meaningless solution. Indeed,

n=0=> yo(x) = Aysin0 = 0,

Since k, = V2mE, /h, the total energy E, can only take discrete values.

r—z En h2k2 2h2 2
kn= m :2mEn=h2k2:En=_’I=u ”L=1,2,3,4,5,---
7 " 2m 2ma?

Note that E, oc n> and the spacing between neighboring energy levels

e+ 17 e h*2n+ 1)

Epuy — E, = - _
+l 2ma? 2ma? 2ma?

is proportional to 2n + 1. This is the reason for the widening of the gap as n — oo.
More significant implication of this is that the particle can not have zero total
energy. Indeed, the lowest energy level

nh?

E, = >
LT 2ka?
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This is one reason why absolute zero degree temperature can not be achieved.
While the infinite square well potential is a mathematical idealization, it approxi-
mates the potential well experienced by atoms or nuclei in a crystal for example.

Another type of bound system frequently encountered in nature is a diatomic
molecule.

4.6 The Simple Harmonic Oscillator Potential

Consider a typical spring encountered in high school physics with a spring con-
stant k such that the restoring force F is given by F' = —kx for the displacement x
from the equilibrium position. For no other reason than convention, we will use ¢
instead of k for the spring constant.

Since |
Vix) = Ecxz,
the Time-Independent Schrodinger Equation is
- d*y(x) ¢
+ 5 XY() = Ey(x).

2m  dx? 2
We will need some fancy footwork to solve this equation. As it turns out, it is con-
venient to introduce a new variable v analogously to the classical theory. Hence,

1 c

"2 \m
After substituting ¢ = (27r)*v*m into the equation and dividing through by ‘27”:, we
get
&Py [2mE  (2nmyv)
+ —~ |y =0.
dx? [ 2 ( n ) v
Now, let & = 2zamv/h and § = 2mE /i* to simplify the equation to

d2
%2’ +(B- Xy =0.

Here are further manipulatinos.

2mm 2)1/2 12 _ (cm)'/*
h2r " m

u= Vax= [_( )
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dy 3 dyr du 3 dy
dx  dudx adu

&y d(di)zd<i—ﬁ>=d<ﬁ%>_@1( W) - o () <

dx? - dx \ dx dx dx  dxdu adu du\ du aduz

You may be more comfortable with the following.

1
du = Vadx = dx=—du

Va
d*y d dy d*y
= =a
dx? ‘/Ladu %du du?
Either way is fine, and we now have
LV ot =al om0 — dz—'”+(§—u2)¢/:0
dx? du? du> \a )

Here comes a very inexact argument.

As |u| — oo, the differential equation behaves like

d*y
qz =0
or d2
v,
i

since B/a is a constant.
The (mathematical) general solution of this differential equation is

W= Ae 12 4 B2,

But, we have to set
B=0

to satisfy the finiteness condition. So,
Y(u) = Ae™ jul — co.
We will look for a solution of the form

W) = Ae™“*H(u);



32CHAPTER 4. SOLUTIONS OF TIME-INDEPENDENT SCHRODINGER EQUATIONS

where H(u) must be slowly varying in comparison to e,
2
Compute d dfl(z”), then plug it back into the equation
y@w) (B,
i+ (g =)o =0
to obtain e p
H H (B
— = 2u— + ——I)H:O.
a2~ " du (a/
We will try a power series solution for H(u).
Let .
H(u) = Za,-ul=a0+a1u+a2u2+a3u3+--- .
1=0
Then,
dH X
u ) = (ay + 2au + 3asu’ + 4aqu’ + - - Ju = (Z(l + 1)a,+1ul] ‘U
du —
= Z(l + Dagu™! = Z laju'
1=0 I=1
and
d*H -
dHW) _ 2a, +3 - 2a3u + 3 - dag + - - = Z(l + DI+ )ag .
du? ‘s

Plugging the above into

d*H dH (B
— - 2u—+|(—-1|H=0
du? “du (a )
gives us
Z(Z + D+ apu' — 22 lay' + ('§ - I)Z au' =0
1=0 1=0 @ 1=0
or

D [(l + 1)1+ s — 2a; + (é - 1)a,] i = 0.

=0 @

For a power series to be zero, each term has to be zero; that is to say all the
coefficients have to be zero.

We now have the following recursion relation.

Bla—1-20)
I+ Di+2) "

apr = —
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The general solution is of the following form.

ar
Hw) =ap|1 + =u* +
ao ardg asardg

u+—u +
a asag asasa;

aqay Aedydy as asdas arasas
ut + ul +--- Jray 3 u + u + -

As |u] — oo, %2 — 2, and H(u) behaves like

2 2
Hu) = agKe" + a1 K ue" .
So, ¢™“/2H(u) behaves like
2 2
aoKe" * + a K ue" * as |u| > o

Therefore, H(u) has to terminate after some n. We have to set 8/a = 2n + 1 for
n=0,1,2,3,4,5,...

When B/a = 2n + 1 we get a Hermite polynomial denoted by H,,(u). This gives
us a series of eigenfunctions

Wu(u) = Ane_u2 /2Hn (u).

The first six functions look like this.

2

n=0  y=Ape"/?
1 Yy =Aue™?

2 = Ay(1 - 2uP)e™

U3 = AsGu — 2ud)e 2

Uy = As(3 — 1202 + dut)e 12

Us = As(15u — 203 + 4u’)e /2

N AW

Now recall that u = Vax, a = 2amv/h, and B = 2mkE [h*.

2mE/R* E E 2FE
ﬁ/(y = = = ; = —
2rnmyv/h  hry = - TV hy
Setting this equal to 2n + 1,
2E, 1
Bla=2n+1 = p =2n+l=—=E, = n+§ hy n=0,1,2,3,4,5,....
v

Recall that
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Therefore, if the force constant ¢ and the mass m are known, we know the energy
levels of this harmonic oscillator.

These are the two important facts about the simple harmonic oscillator.

1. The energy levels are equally spaced. This is markedly different from the
infinite square well. This means many higher energy levles can be achieved
more easily.

2. The lowest energy posssible is not zero but £y = %hv for n = 0. Since
vibrations of diatomic molecules can be closely approximated by the simple
harmonic oscillator, this is another reason why the absolute zero degree
temperature can not be achieved.

When a molecule drops from a higher energy level to a lower level, a photon
carrying that much energy is released. On the other hand, a molecule moves to
a higher energy level if it absorbs a photon carrying the energy corresponding to
the difference between the two levels. These phenomena are called emission and
absorption respectively.

Finally, the above emission and absorption typically occur in the microwave re-
gion. While not a diatomic molecule, the excited vibration of water molecules in
food is responsible for the cooking done with a microwave oven. This is why we
call it a microwave oven to begin with.





