2008 Lecture No.3
Mathematics of Excitability and Oscillation
Masatoshi Murase

Phase resetting (1 and

1 \ ‘\ \ \ 2) and cessation of
A \ \ \/\ spontaneous activity (3)
‘\ i of sinoatrial (SA) nodal
! 1\/ v \/ pacemakers from

kittens by brief

2 \ \ \ \ subthreshold ,
\/\ \/\/ \ deploarizing pulses.
A A O Y A T N The spontaneous
/ \/ 1\.) \/ \ activity is only

annihilated if the
stimulus occurs over a

3 narrow range of
l | stimulus amplitude and
phase.
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The phase portraits and root structure of a liner oscillator
From J.M.T. Thompson & H. B. Stewart
“Nonlinear Dynamics and Chaos ” Wiley 1986




This system can be described by

the van der Pol equation' (see e.g. Schmidt and Tondl, 1986):

d*x dx

— —g(l-x*)—+x=0 1.4

dr? { } dt (L4
where the damping parameter €(1 — x°) changes sign at x = 1. (If x < 1,
then the system switches on to increase x, and vice versa.) Here, € plays an
important role in determining oscillatory behaviour (Fig. 1.3). The characteristic
function of equation (1.4) is given by

AM-gh+1=0. (1.5)

The roots of this equation are

A= (1.6)
where

D =g -4 (1.7)

If £ 1s small (e.g. € = 0.1 or 1 in Fig. 1.3), the discriminant, D, is negative
and thus we have two complex conjugate roots. In the (x, dx/dr) phase plane,
the singular point at the origin becomes an unstable focus. The oscillatory
pattern is quite simply similar to that of a harmonic oscillator. It is useful to
consider the motion of a ball in a potential field in this system. Using polar
coordinates (see Haken, 1977, Thompson and Stewart, 1986), the following
decoupled first-order equations are obtained

dr du/
E == *a; (1.8a)
i—? = constant {1.8b)

where r is the amplitude, 6 is the phase, and U is the potential-energy
function which has a vertical axis of rotation (Fig. 1.4). Then we can imagine
a ball moving along the wall with the angular velocity d6/dt.
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Figure 1.4  The limit-cycle oscillation illustrated by a circle on the (x, dx/dr) plane (below)
and the movement of a ball on the rotational potential function (above) for small £
values. The temporal oscillations are quasi-sinusoidal because of the small £ values. The
singular point (0, 0) becomes an unstable focus.

From Maatoshi Murase “The Dynamics of Cellular Motility” Wiley (1992) p7

When € becomes large, highly nonlinear oscillation called relaxation oscil-
lation results. In this case, the singular point (x;, dx,/df) = (0, 0) becomes an
unstable node. By using Liénard’s transformation (see Minorsky, 1947), the
following differential equations are obtained:

dx

— =g(y—x*+x 1.9a

>y (y ) (1.9a)
d 1
A AP (1.9b)
dt ¢

Since y is a more slowly changing variable than x (except for near the
horizontal isocline or the y-nullciine or dy/dr = 0), the potential function is
defined over the (x, y) phase plane (Fig. 1.5). According to the motion of a
ball acted on by the potential function, we can recognize two processes: the
slow change of the energy-accumulating process and the fast change of the
energy-supplying process. The relaxation oscillations are characterized by
these two distinct processes.

It is interesting to notice the close link between oscillations and excitabil-
ity. The most famous example of excitability is provided by the nervous
system as modelled by Hodgkin and Huxley (1952).7 FitzHugh (1961, 1969)
and Nagumo et al. (1962) developed a simple model, which is described by
the following set of differential equations:



dx
E=E{y—x3+x}+z (1.10a)
dy

1
= ——(x—-a+bh .
” E{x a+ by) (1.10b)

where a and b are fixed parameters and Z is stimulus intensity. Since this
model resembled the phase-plane model used by Bonhoeffer to explain the
behaviour of passivated iron wires, FitzHugh called it the Bonhoeffer—van der
Pol model (BVP for short). When a = b = Z = (), the BVP model described
by equations (1.10) can be reduced to the model for the relaxation oscillation
described by equations (1.9).

Figure 1.6 shows the typical x- and y-nullclines of the BVP model. When
Z =0, the x-nullcline (solid curve) intersects with the y-nullcline (solid line)
at the stable point (denoted by s). All trajectories approach this stable point.
There is excitability in that movement of the phase point depends on the
initial displacement of the phase point from the stable point. Of course, this
system exhibits the oscillations under negative constant values of Z. This occurs
because the x-nullcline is raised by the negative Z values as shown by the
broken curve and the intersection (denoted by u) becomes unstable which
leads to limit-cycle oscillation.

Many excitable—oscillatory phenomena (e.g. Belouzov-Zhabotinsky reac-
tions, glycolitic systems) can be accounted for by this mechanism (see e.g.
Krinsky, 1984 and Zykov, 1987). Here, we can see an interesting analogy
between these oscillations and the machine sketched in Figure 1.2, That is, a
constant flow causes oscillations.

Figure 1.5 The relaxation oscillation illustrated by a bi-phasic path on the (x, y) phase
plane (below) and the movement of a ball on the potential function (above) for large
€ values. There are two distinct time-scales corresponding to the fast equation (1.9a)
and the slow equation (1.9b). The movement of the ball summarizes the trajectory on
the phase plane. The numbered balls correspond to the phase points numbered on the
trajectory.

Figure 1.6  x- and y-nullclines of the BVP model described by equations (1.10). When
Z =0, the cubic x-nullcline intersects with the straight y-nullcline at the stable point. As
Z is decreased from 0, the x-nullcline is raised without any change in the y-nulicline. For
certain values of Z, the two nullclines intersect in the region where the x-nullcline has
a negative slope. This means that the intersection, or the steady state, becomes unstable,
which leads to oscillations.

From Maatoshi Murase “The Dynamics of Cellular Motility” Wiley (1992), p9 (left) and p10 (right).
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The impulse has been triggered by a brief depolarization at A.
From G. M. Shepherd
“Neurobiology ” Oxford University Press 1994
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(a) An inhomogeneous
L t=0 system: a drop of ink
and water.
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(b) Diffusion process
ey gradually homogenizes
the system.

From A. Babloyantz

Wiley 1986

“Molecules, Dynamics & Life ”
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